Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Are there any inflection points for f(x)=x^2/((x^2)-4)?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
derivate it twice and set the it equal to zero...in other words solve this equation\[f''(x)=0\]
I got 32+24x^2 as the numerator
let me check it

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

quite right :) and that results in ????
nothing?
is there any solution for\[32+24x^2=0\]???
I don't think so? o.O
it gives \[x^2=-\frac{4}{3}\] which is not a true statement for real numbers
So no inflection?
yes...no inflection point
hm...ok thanks :)
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question