Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Is the following a correct solution?

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{}^{}\frac{ 1 }{ 4+x ^{2} }dx=\frac{ (x-\sqrt{4}i) }{ (x+\sqrt{4}i) }\] \[=\int\limits_{}^{}\frac{u-2\sqrt{4}i}{u}=\int\limits_{}^{}\frac{-2\sqrt{4}i}{u}=-2\sqrt{4}i \ln|u| + c\] \[=-2\sqrt{4}i \ln|x+\sqrt{4}i| + c\]
i didnt get your solution/or the question..please clarify..
The question is: is \[-2\sqrt{4}i \ln |x+\sqrt{4}i| + c\] the indefinite integral of \[\int\limits_{}^{}\frac{1}{4+x ^{2}} dx\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you can see 1/ 4+x^2 = 1/ (x+ 2i)(x-2i) = 1/4i * (x+2i - (x-2i))/(x+2i)(x-2i) now separate(simplify) and integrate..hope that helped.. am sorry i dint get your soln much.
That is correct also, but i am wondering if the solution involving complex numbers is also correct.
Actually, the solution that you typed should be 1/2 Tan(x/2) + K
Ahh crap, sorry, i didn't read your solution properly, i just assumed that you were using trig substitution. Forget what i just said, let me take a closer look =)
yes, I can show that both functions has a same power series, and it shows the equality is corect.
for example tan|dw:1354952178836:dw|
for example tan^-1(i)=inf
Ahh, thats using the power series. Cheers =)

Not the answer you are looking for?

Search for more explanations.

Ask your own question