anonymous
  • anonymous
if F(t) and G(t) are of exponential order and L{F(t)}=L{G(t)} prove that F(t)=G(t). Can anyone help me prove this question plz =)
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
is L for \(\mathcal L\)aplace transform ?
anonymous
  • anonymous
yes
UnkleRhaukus
  • UnkleRhaukus
when you say \[\mathcal L\{F(t)\}=\mathcal L\{G(t)\}\] do you mean \[\mathcal L\{f(t)\}=\mathcal L\{g(t)\}\]\[\qquad F(s)=G(s)\]?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
or do you mean the laplace transforms of, the laplace transforms of the functions are equal /
anonymous
  • anonymous
laplace of this function are equal and i want to prove that the function also equal...but dunno to start it....can u help me plz
anonymous
  • anonymous
i am the same person that ask for this question.............actually this is a laplace transform theorem of derivatives............i need to prove this theorem.......the laplace for F(t)=G(t)

Looking for something else?

Not the answer you are looking for? Search for more explanations.