anonymous
  • anonymous
Solution to the following integral (in post below)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{}^{} \frac{t-1}{t^{2}+4t+3} dt\] I'm kind of stuck on this one, i've tried a few different methods of u substitution but can't solve it.
Callisto
  • Callisto
Does partial fraction help?
anonymous
  • anonymous
Yeah i think that might be the answer. I have only done partial fractions in the form where there is a coefficient and a variable however. Not when there are two terms in the numerator.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
Hmmm... \[\frac{t-1}{t^{2}+4t+3}=\frac{t-1}{(t+1)(t+3)} = \frac{A}{t+1}+\frac{B}{t+3}\] So, A(t+3) + B(t+1) = t-1 Comparing the coefficients, A+B = 1 3A +B = -1 Something like this?!
anonymous
  • anonymous
Yep... i think i jumped the gun when i gave up on trying to solve with partial fractions. I just revised my notes and i'll have a go using partial fractions now. I'll let you know how i go.
Callisto
  • Callisto
Okay!!~
anonymous
  • anonymous
Awesome, partial fractions was the key. Thanks for that =)
Callisto
  • Callisto
You're welcome :)
anonymous
  • anonymous
Use partial fraction method..
shubhamsrg
  • shubhamsrg
or you may use partial fractions alternatively, what i mean is t-1 / t^2 +4t +3 = 1/2 ( 2t - 2)/(t^2 +4t +3) =1/2 ( 2t +4 -6)/(t^2 +4t +3) = 1/2 ( 2t +4)/(t^2 +4t +3) - 1/2 (6/(t^2 +4t +3)) integrate separately, for 1st part, if you let denominator =z,. you directly get numerator = dz .. we are concerned with integrating 1/(t^2 +4t +3) that's also simple, we see we have 1/(t+1)(t+3) = 1/2 (2 / (t+1)(t+3)) =1/2 ( t+3 - (t+1))/(t+1)(t+3)) =>now when you separate out, you'll directly be able to integrate ..hope that helps.. note that i've used partial fractions only,but in a different manner..

Looking for something else?

Not the answer you are looking for? Search for more explanations.