anonymous
  • anonymous
What does the series converge to? 3/5-9/25+27/125-....... This is a geometric alternating series where A=3/5 and r=3^n/5^n? I think how would I get to its convergence?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The summation of these geometric series to infinity is = a[(1-R^(n+1))/(1-R)] I assume you know how this answer comes from, so a = 3/5, R = (-1) (3/5) and n tends to infinity you'll get the answer = (3/5)/(1+3/5) = 3/8
anonymous
  • anonymous
I had a brain fart, series was not my strong suit in Calc 2, we barely touched on it.Thanks
anonymous
  • anonymous
\[\Large\sum_{n=1}^{\infty}{(-1)^{n+1}}(\frac{3}{5})^n\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I originally put the standard A/1-r and got 15/10, but then I noticed it was an alternating series
anonymous
  • anonymous
answer is 3/8
anonymous
  • anonymous

Looking for something else?

Not the answer you are looking for? Search for more explanations.