anonymous
  • anonymous
How do I use the hospital rule to solve this limit? lim x-> -infinity ( (2^x-2^(-x)) / 2^x+2^(-x) )
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1354999747553:dw|
anonymous
  • anonymous
\[\frac{d}{dx} 2^x=\ln(2)2^x\] So I'm not sure how much it'll end up helping.
anonymous
  • anonymous
Your equation is\[\lim_{x \rightarrow -\infty}\frac{ 2^{x}-2^{-x} }{ 2^{x}+2^{-x} }\]? L'Hopital's Rule says that if \[\lim_{x \rightarrow c}f(x)=\lim_{x \rightarrow c}g(x)=0or \pm \infty\]and if\[\lim_{x \rightarrow c}\frac{ f'(x) }{ g'(x) }\]where g'(x) =/= 0 for all x in the domain (basically if the bottom isn't going to be 0) then\[\lim_{x \rightarrow c}\frac{ f(x) }{ g(x) }=\lim_{x \rightarrow c}\frac{ f'(x) }{ g'(x) }\]So the first thing you want to do is take \[\lim_{x \rightarrow -\infty}2 ^{x}-2^{-x}\]and\[\lim_{x \rightarrow -\infty}2^{x}+2^{-x}\]and see what they are. If they're both 0 or +- infinity, then you can use the rule. Take the derivative of the top and then take the derivative of the bottom, and then take the limit of the whole thing and see what you get. I'll stick around if you need help with any of that.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
The biggest thing that'll help is that \[\ln 2 \times 2^{x}+\ln 2 \times2^{-x}=2 \times \ln 2 \times \cosh(\ln2 \times x)\]and\[\ln 2 \times 2^{x}-\ln 2 \times2^{-x}=2 \times \ln 2 \times \sinh(\ln2 \times x)\]
anonymous
  • anonymous
Thank you very much!
anonymous
  • anonymous
You're welcome! :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.