Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

How do I use the hospital rule to solve this limit? lim x-> -infinity ( (2^x-2^(-x)) / 2^x+2^(-x) )

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1354999747553:dw|
\[\frac{d}{dx} 2^x=\ln(2)2^x\] So I'm not sure how much it'll end up helping.
Your equation is\[\lim_{x \rightarrow -\infty}\frac{ 2^{x}-2^{-x} }{ 2^{x}+2^{-x} }\]? L'Hopital's Rule says that if \[\lim_{x \rightarrow c}f(x)=\lim_{x \rightarrow c}g(x)=0or \pm \infty\]and if\[\lim_{x \rightarrow c}\frac{ f'(x) }{ g'(x) }\]where g'(x) =/= 0 for all x in the domain (basically if the bottom isn't going to be 0) then\[\lim_{x \rightarrow c}\frac{ f(x) }{ g(x) }=\lim_{x \rightarrow c}\frac{ f'(x) }{ g'(x) }\]So the first thing you want to do is take \[\lim_{x \rightarrow -\infty}2 ^{x}-2^{-x}\]and\[\lim_{x \rightarrow -\infty}2^{x}+2^{-x}\]and see what they are. If they're both 0 or +- infinity, then you can use the rule. Take the derivative of the top and then take the derivative of the bottom, and then take the limit of the whole thing and see what you get. I'll stick around if you need help with any of that.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The biggest thing that'll help is that \[\ln 2 \times 2^{x}+\ln 2 \times2^{-x}=2 \times \ln 2 \times \cosh(\ln2 \times x)\]and\[\ln 2 \times 2^{x}-\ln 2 \times2^{-x}=2 \times \ln 2 \times \sinh(\ln2 \times x)\]
Thank you very much!
You're welcome! :D

Not the answer you are looking for?

Search for more explanations.

Ask your own question