Here's the question you clicked on:
Staffy
Evaluate the following integrals: sin^2(x)dx from 0 to 2π, |sin x| dx from 0 to 2π, (x^n)(e^−x)dx from 0 to ∞ sin(ax)sin(bx)dx from 0 to π Consider all possible cases (n is a positive integer)
1) hint : sin^2 x = (1-cos2x)/2
2) divide 2 case for : Area1 = int (sinx) dx [0,pi] area2 = int(-sinx)dx [pi,2pi] the total area is .........
Why is it negative sinx?
because the absolut function must be positive number, so the area of under x-axes should give a (-) sign too, so that (-)(-) be postive
That makes sense, thanks
let's look this graph |dw:1355024687100:dw|
4) \[\begin{align*} \int\limits_{0}^\pi\sin(mx)\sin(nx)\text dx &=\frac12\int\limits_{0}^\pi\cos((m-n)x)-\cos((m+n)x)\text dx\\ \\ &=\frac12\left(\frac{\sin((m-n)x)}{m-n}-\frac{\sin((m+n)x)}{m+n}\Big|_0^\pi\right)\\ &=\dots\\ &=\dots\\ \\ \end{align*}\]