anonymous
  • anonymous
Evaluate the following integrals: sin^2(x)dx from 0 to 2π, |sin x| dx from 0 to 2π, (x^n)(e^−x)dx from 0 to ∞ sin(ax)sin(bx)dx from 0 to π Consider all possible cases (n is a positive integer)
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
RadEn
  • RadEn
1) hint : sin^2 x = (1-cos2x)/2
RadEn
  • RadEn
2) divide 2 case for : Area1 = int (sinx) dx [0,pi] area2 = int(-sinx)dx [pi,2pi] the total area is .........
anonymous
  • anonymous
Why is it negative sinx?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

RadEn
  • RadEn
because the absolut function must be positive number, so the area of under x-axes should give a (-) sign too, so that (-)(-) be postive
anonymous
  • anonymous
That makes sense, thanks
RadEn
  • RadEn
let's look this graph |dw:1355024687100:dw|
UnkleRhaukus
  • UnkleRhaukus
4) \[\begin{align*} \int\limits_{0}^\pi\sin(mx)\sin(nx)\text dx &=\frac12\int\limits_{0}^\pi\cos((m-n)x)-\cos((m+n)x)\text dx\\ \\ &=\frac12\left(\frac{\sin((m-n)x)}{m-n}-\frac{\sin((m+n)x)}{m+n}\Big|_0^\pi\right)\\ &=\dots\\ &=\dots\\ \\ \end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.