anonymous
  • anonymous
1. Consider the differential equation x4y′′ − x3y′ = 8. (b) Show that Ax^2 + 1 + B is a solution to the equation, where A and B are x^2 constants.
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I would make the coefficient in front of the y'' a 1, and then use u=y' to reduce it to a first order differential equation. And then use a simple integrating factor technique
anonymous
  • anonymous
What is part (a)?
anonymous
  • anonymous
One way I can think of is to make the left side looks like the Cauchy-Euler equation.. \[ x^4y′′ − x^3y′ = 8\]\[ x^2y′′ − xy′ = \frac{8}{x^2}\]Set the left =0 \[\lambda (\lambda -1) - \lambda = 0\]\[\lambda = 0, 2\]\[y_c = c_1x^2+c_2\]And then find the particular solution.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks a bunch!

Looking for something else?

Not the answer you are looking for? Search for more explanations.