anonymous
  • anonymous
Find the area of the region bounded by the curves y=x^2 and y=x^4
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1. find the intercept of the curve \[x^4 - x^2 =0\]\[x^2 (x^2-1)=0\]\[x=0, 1, -1\] Then integrate it \[\int_{-1}^{0}(x^2-x^4)dx + \int_0^1(x^2-x^4)dx\]
anonymous
  • anonymous
Or... since it is an even function, \[\int_{-1}^{0}(x^2-x^4)dx + \int_0^1(x^2-x^4)dx\]\[=2\int_{-1}^{0}(x^2-x^4)dx\]
anonymous
  • anonymous
Wait, so why did you multiply everything by 2?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
?
anonymous
  • anonymous
I didn't multiply everything by two... It's just \[\int_{-1}^{0}(x^2-x^4)dx = \int_0^1(x^2-x^4)dx\] (Since it is an even function) So, \[\int_{-1}^{0}(x^2-x^4)dx + \int_0^1(x^2-x^4)dx\]\[=\int_{-1}^{0}(x^2-x^4)dx +\int_{-1}^{0}(x^2-x^4)dx \]\[=2\int_{-1}^{0}(x^2-x^4)dx \]Using the property of even function can save some work.

Looking for something else?

Not the answer you are looking for? Search for more explanations.