anonymous
  • anonymous
tan^2(60) + 4cos^2(45) - 9tan^2(30) - 8sin^2(30) The answer is zero but why!? i need step by step solution please
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
why can't you just plug the whole thing into your calculator?
anonymous
  • anonymous
because in the exam they already give you the answer, you have to do the procedure
Callisto
  • Callisto
tan60 = \(\sqrt{3}\) cos45 = \(\frac{1}{\sqrt2}\) tan30 = \(\frac{1}{\sqrt3}\) sin30 = 1/2 These are all special angles and you should remember them.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes i know them but i just continue to get 6 instead of 0
anonymous
  • anonymous
I'm getting zero just fine though. note the squares.
anonymous
  • anonymous
tan^2(60) = 3 ? 4cos^2(45) = 4 ?
Callisto
  • Callisto
4cos^2(45) = 4 (1/2) = ...?
anonymous
  • anonymous
my math base is not good, that's the reason i wrote step by step solution
Callisto
  • Callisto
\[cos45 =\frac{1}{\sqrt2}\]\[cos^245 =(\frac{1}{\sqrt2})^2 = \frac{1}{2}\]\[4cos45 =4(\frac{1}{2}) = ...?\]
anonymous
  • anonymous
4 (1/2) = 2
Callisto
  • Callisto
Yes.
anonymous
  • anonymous
\[\frac{ \sin ^{2} (60)}{ \cos ^{2}(60)}+4\cos ^{2}(45)-9\frac{ \sin ^{2}(30) }{ \cos ^{2}(30) }-8\sin ^{2}(30)\]
anonymous
  • anonymous
so, tan^2(60) = 3
Callisto
  • Callisto
tan^2(60) = 3 <- Yes
anonymous
  • anonymous
|dw:1355048071288:dw|
anonymous
  • anonymous
i found in my book that cos 45 = \[\frac{ \sqrt{2} }{ 2}\]
Callisto
  • Callisto
\[\frac{1}{\sqrt2}=\frac{1}{\sqrt2}\times \frac{\sqrt2}{\sqrt2}=\frac{\sqrt2}{\sqrt2^2} = \frac{\sqrt2}{2}\] Just rationalization.
anonymous
  • anonymous
9tan^2(30) = \[\tan( 30) = \frac{ \sqrt{3} }{ 3 } ; \tan ^{2}(30) = 3/9 = 1/3 \]
anonymous
  • anonymous
times 9 = 3 right?
Callisto
  • Callisto
Yes.
anonymous
  • anonymous
8 sin ^2 (30) = 4 ?
anonymous
  • anonymous
no, i think it 8
anonymous
  • anonymous
9tan^2(30) - 8sin^2(30) = 3 - 8 = -5, at the end that will give me 5- (-5) that equals 10
Callisto
  • Callisto
8 sin ^2 (30) = 8 (1/2)^2 = 8 (1/4) = ...
anonymous
  • anonymous
2
anonymous
  • anonymous
still, 3-2 = 1, 5-1 = 4
anonymous
  • anonymous
|dw:1355049445375:dw| look at this one to see how i get 0
Callisto
  • Callisto
tan^2(60) + 4cos^2(45) - 9tan^2(30) - 8sin^2(30) tan^2(60) = \(\sqrt3^2\) = ... 4cos^2(45) = 4\((\frac{1}{\sqrt2})^2\) = 4(1/2) = ... - 9tan^2(30) = -9 \((\frac{1}{\sqrt3})^2\) = -9 (1/3) = ... - 8sin^2(30) = -8 (1/2)^2 = -8 (1/4) = ... Sum up the four answers.
anonymous
  • anonymous
|dw:1355049643294:dw|
anonymous
  • anonymous
zero! nice thanks calisto
Callisto
  • Callisto
You're welcome :)
Callisto
  • Callisto
| 30 | 45 | 60 ------------------------------------ sin | \(\frac{1}{2}\) | \(\frac{1}{\sqrt2} /\frac{\sqrt2}{2} \) | \(\frac{\sqrt3}{2}\) ------------------------------------ cos | \(\frac{\sqrt3}{2}\) | \(\frac{1}{\sqrt2} /\frac{\sqrt2}{2} \) | \(\frac{1}{2}\) ------------------------------------ tan | \(\frac{1}{\sqrt3} /\frac{\sqrt3}{3} \) | 1 | \(\sqrt{3}\)
Callisto
  • Callisto
Memorize the table..
anonymous
  • anonymous
yes, with practice i will memorise the terms

Looking for something else?

Not the answer you are looking for? Search for more explanations.