• anonymous
Find any relative extrema and inflection points of the function. Use a graphing utility to confirm your results y= x ln x
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • ZeHanz
First: because of the ln-function, x > 0. Differentiate:\[\frac{ dy }{ dx }=1*\ln x+x* \frac{ 1 }{ x }=\ln x+1\] Now solve\[\frac{ dy }{ dx }=0\]to find the x-value(s) where the graph has a horizontal tangent line. With the aid of a sign scheme of the derivative you can establish whether these x-values are related to a min/max value or that there is an inflection point. To find additional inflection points, you should differentiate once more, and solve y''=0. You get an inflection point if there is a sign change around the solution of y''=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.