Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

If r = 17.2 mm and p = 10.4 mm, which of the following is the range that represents a possible length for q in this triangle? A) 6.8 mm < q < 27.6 mm B) q >= 6.8 mm C) 6.8 mm <= q <= 27.6 mm D)q <= 27.6 mm

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

In a triangle, the measure (length) of no one side can be equal to or greater than the sum of the measures of the other 2 sides. So, look for an expression where "q" does not go over a certain value.
I'm sorry lol I'm a little confused..
c corret

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1355068873536:dw|np, if you have 2 sides that are 5 and 7, then the third side has to be less than 5 + 7 or 12, because you would have something like this otherwise:
And in that case, you would see that the 2 shortest sides could never connect.
Oooh okay okay I get it
This is one of those "a picture says a thousand words" problems!
Haha yeah it is!
Thank's for your help!
You're welcome!
One more thing.
Yeahh..?
Like the ones that say <= ?
Actually, I just saw the correct answer. It is indeed listed correctly. But it is a little tricky, so I'll stick around if you want to try it out.
Yes please!!
Definitely. Here's a hint: that relationship that I described above has to hold for all 3 types. That is: p < q + r q < p + r r < p + q So, that is the trick. All 3 relationships have to be satisfied.
One more hint: 2 of the selections look very similar and it will be the one with the inequalities in it, not the mixed "inequality with equality"
So, back to my example of where you have 2 sides where one is 5 and one is 7. The third side has to be shorter than 12, but it also has to longer than 2 2 < third side < 12 because if it is longer than (or equal to) 12, then it is greater than (or =) 5 + 7 if it is shorter than (or =) 2, then 7 is greater than (or =) 5 + the third side
So, with this information, are you able to get the correct range now?
Yeah thank you!
You're welcome!
  • phi
one way to see the answer: hook together r = 17.2 mm and p = 10.4 mm with a hinge. if you close them, you get the shortest possible 3rd side if you open them into a line, you get the longest possible 3rd side |dw:1355073170590:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question