Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

roselin

verify that the given point is on the curve nd find the lines that are a) tangent and normal to the curve at the given point. x^2cos^2y -siny=0 (0,pi) solve by implicit differentiation

  • one year ago
  • one year ago

  • This Question is Closed
  1. ZeHanz
    Best Response
    You've already chosen the best response.
    Medals 0

    This is the curve, I think:\[x^2\cos ^2 y-\sin y=0\] If you set x = 0, all you have left is: sin y = 0 This is true for y = k*pi (k is an integer), so it is true for y = pi, so (0, pi) is on the curve. Implicit differentiation is just a quick way to differentiate without first solving the equation for y. You do everything the normal way: use the product rule etc., just remember that wherever you see y, this is a function of x, or y(x). This means that the Chain Rule plays an important role. I.e.: (siny)' = cosy*dy/dx Implicit differentiation of your curve therefore gives:\[2x \cos ^2 y -2x \sin y \cos y \frac{ dy }{ dx }-\cos y \frac{ dy }{ dx }=0\]Solve for dy/dx and replace 2xsinycosy by sin2y:\[\frac{ dy }{ dx }=\frac{ 2x \cos ^2y }{ x \sin 2y-\cos y }\]Substitute x=0 and y = pi to see the slope of the tangent line in (0, pi). Once you have done that, you will also immediately see the line normal to the curve!

    • one year ago
  2. roselin
    Best Response
    You've already chosen the best response.
    Medals 0

    okay,thanks. i will now solve it.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.