Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
samnatha
Group Title
please help find the equations of the tangents to these circles at the points given x^2 + y^2 +2x + 4y  12 = 0 (3, 1)
 one year ago
 one year ago
samnatha Group Title
please help find the equations of the tangents to these circles at the points given x^2 + y^2 +2x + 4y  12 = 0 (3, 1)
 one year ago
 one year ago

This Question is Closed

campbell_st Group TitleBest ResponseYou've already chosen the best response.0
the circle will have a tangent at x = 3 which is in the top half of the circle as the centre is (1, 2) you need to get the equation of the circle with y as the subject (x + 1)^2 + (y + 2)^2 = 12  1  4 or (x +1)^2 + (y + 2)^2 = 7 (y + 2)^2 = 7  (x + 1)^2 \[y + 2 = \pm \sqrt{7  (x + 1)^2}\] so \[y = \pm \sqrt{7  (x + 1)^2}  2\] so you need to differentiate the which is the upper semicircle \[y = \sqrt{7  (x + 1)^2}  2\] and then substitute the find the slope of the tangent... once you have the slope... then use the point (3, 1) to find the equations... hope it helps.
 one year ago

samnatha Group TitleBest ResponseYou've already chosen the best response.0
i cam't differentiate as we haven't learnt it yet ?
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.