richyw
  • richyw
Find the area of the part of the cylinder \(x^2+z^2=a^2\) that lies within the cylinder \(r^2=x^2+y^2=a^2\)
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

richyw
  • richyw
let me type out what I have done so far
richyw
  • richyw
\[z(x,y)=\sqrt{a^2-x^2}\]\[z_x=-\frac{x}{\sqrt{a^2-x^2}}\]\[z_y=0\]\[dS=\sqrt{1+(z_x)^2+(z_y)^2}\,dA=\frac{a}{\sqrt{a^2-x^2}}dA\]
richyw
  • richyw
so I get lost from here. my solution manual says that the area is\[A=2\iint_D\frac{a}{\sqrt{a^2-x^2}}dA\]Where D is the disk in which the vertical cylinder meets the xy-plane

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

richyw
  • richyw
where is that 2 coming from?
richyw
  • richyw
oh ok because I let \(z(x,y)=\sqrt{a^2-x^2}\) and it's really \(z(x,y)=\pm\sqrt{a^2-x^2}\) so by symmetry the area will be twice that?

Looking for something else?

Not the answer you are looking for? Search for more explanations.