anonymous
  • anonymous
what exactly is going on in the highlighted region of this limit evaluated as x approaches pi/4? http://i47.tinypic.com/2akkxvq.png i understand how you eventually come up with those two parts of the limit and evaluate them separately, but why is the highlighted part -1?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\lim\limits_{x\rightarrow\pi/4}\frac1{\cos(x)}\cdot\boxed{\dfrac{\cos(x)-\sin(x)}{\sin(x)-\cos(x)}}\]\[=\lim\limits_{x\rightarrow\pi/4}\frac1{\cos(x)}\cdot\boxed{\dfrac{-1\left(\sin(x)-\cos(x)\right)}{\sin(x)-\cos(x)}}\]\[=\lim\limits_{x\rightarrow\pi/4}\frac1{\cos(x)}\cdot\boxed{-1}\]
UnkleRhaukus
  • UnkleRhaukus
the numerator has been re-arranged and the common factor of sin x-cos x cancels

Looking for something else?

Not the answer you are looking for? Search for more explanations.