anonymous
  • anonymous
Write and Solve Partial Fraction Decomposition of a Rational Expression (LOOK IN FOR EQUATION)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ 2x }{ x ^{3}-1 }\]
UnkleRhaukus
  • UnkleRhaukus
how did you get your first step?
UnkleRhaukus
  • UnkleRhaukus
\[x^3-1=(x-1)(x^2+x+1)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
so \[\frac{2x}{x^3-1}=\frac A{x-1}+\frac {Bx+C}{x^2+x+1}\]
UnkleRhaukus
  • UnkleRhaukus
the factor (x^2+x+1) is quadratic , so the denominator must be linear, not just a scalar
UnkleRhaukus
  • UnkleRhaukus
pardon?
UnkleRhaukus
  • UnkleRhaukus
in where?
UnkleRhaukus
  • UnkleRhaukus
im not sure what you are saying
UnkleRhaukus
  • UnkleRhaukus
from the start.
UnkleRhaukus
  • UnkleRhaukus
\[\frac{2x}{x^3-1}=\frac{2x}{(x-1)(x^2+x+1)}=\frac A{x-1}+\frac {Bx+C}{x^2+x+1}\] \[2x=A(x^2+x+1)+(Bx+C)(x-1)\] to find the constants try x=1 , x=0
anonymous
  • anonymous
Is This Correct? b=-2/3 c=2 a=2/3
UnkleRhaukus
  • UnkleRhaukus
\[\color{red}\checkmark\]great work

Looking for something else?

Not the answer you are looking for? Search for more explanations.