Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

isai

The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: f(0) = −2 , f′(0) = 3, f"(0) = −1 . A. The function g is given by g(x) = tan(ax) + f(x) for all real numbers, where a is a constant. Find g′(0) and g"(0) in terms of a.

  • one year ago
  • one year ago

  • This Question is Closed
  1. Shadowys
    Best Response
    You've already chosen the best response.
    Medals 1

    just differentiate and let x=0. \(g'(0) = a sec^2 (0) +f'(0)\) where \(sec^2(0)=1\), so, \(g'(0) = a +3\)

    • one year ago
  2. isai
    Best Response
    You've already chosen the best response.
    Medals 0

    Can you help me with the second part too? The function h is given by ℎ(x) = sin(kx) ∙ f(x) for all real numbers, where k is a constant. Find ℎ′(x) and write an equation for the line tangent to the graph of h at x=0. please?

    • one year ago
  3. Shadowys
    Best Response
    You've already chosen the best response.
    Medals 1

    sure...for this question, you too find the h'(0) to get the gradient at that pt, but this time you also have to evaluate h(0) to get the point(0,h(0)) \(h'(0)=k \cos (0) f(0) + f'(0) sin(0)\) \(h'(0)=-2k\)

    • one year ago
  4. isai
    Best Response
    You've already chosen the best response.
    Medals 0

    Thank you sooo much! I highly appreciate it :)

    • one year ago
  5. Shadowys
    Best Response
    You've already chosen the best response.
    Medals 1

    you're welcome:)

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.