anonymous
  • anonymous
The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: f(0) = −2 , f′(0) = 3, f"(0) = −1 . A. The function g is given by g(x) = tan(ax) + f(x) for all real numbers, where a is a constant. Find g′(0) and g"(0) in terms of a.
Calculus1
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
just differentiate and let x=0. \(g'(0) = a sec^2 (0) +f'(0)\) where \(sec^2(0)=1\), so, \(g'(0) = a +3\)
anonymous
  • anonymous
Can you help me with the second part too? The function h is given by ℎ(x) = sin(kx) ∙ f(x) for all real numbers, where k is a constant. Find ℎ′(x) and write an equation for the line tangent to the graph of h at x=0. please?
anonymous
  • anonymous
sure...for this question, you too find the h'(0) to get the gradient at that pt, but this time you also have to evaluate h(0) to get the point(0,h(0)) \(h'(0)=k \cos (0) f(0) + f'(0) sin(0)\) \(h'(0)=-2k\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thank you sooo much! I highly appreciate it :)
anonymous
  • anonymous
you're welcome:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.