Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus Group Title

\(F\)ourier Series

  • one year ago
  • one year ago

  • This Question is Closed
  1. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    • one year ago
    1 Attachment
  2. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    please check my work for; •mathematical •typographical •formatting errors

    • one year ago
  3. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    • one year ago
  4. richyw Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    man I can't wait to learn this stuff

    • one year ago
  5. Outkast3r09 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i would but i'm studying for my physics final =/

    • one year ago
  6. mahmit2012 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    that was Fourier series. And also where is your works? That was you typed?

    • one year ago
  7. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    my work is in 1.pdf,

    • one year ago
  8. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Can't wait till I learn tall this stuff.

    • one year ago
  9. oldrin.bataku Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Why wait? Basic Fourier series are rather intuitive and simple to figure out!

    • one year ago
  10. Aylin Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I didn't see any mistakes, though I didn't have time to check all of the integrations. I think it's good.

    • one year ago
  11. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    thanks !

    • one year ago
  12. Mathmuse Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    1 a) ii bounds on bn remain -pi to pi after you pull out f(x)

    • one year ago
  13. Mathmuse Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    didn't see anything else wrong with the integrals. this is a great primer for fourier. i like the complex form once i saw it

    • one year ago
  14. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Your ,... Right , thank-you so much @Mathmuse \[\begin{align*} b_n&=\frac1\pi\int\limits_{-\pi}^\pi f(x)\sin(nx)\text dx\\ &=\frac1\pi\int\limits_{\color{red}{\cancel{-\pi}}0}^\pi\sin(nx)\text dx\\ &=\dots \end{align*}\]

    • one year ago
  15. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\textbf 2 (b) \]\begin{align*} f(x)&=\cos(x),\qquad0<x<3 ,\qquad=f(x+3) \end{align*} \begin{align*} % a_0 a_0&=\frac23\int\limits_{0}^{3}\cos(x)\text dx\\ &=-\frac23\sin(x)\big|_0^3\\ &=-\frac23\sin(3) \end{align*} \begin{align*} % a_n a_n&=\frac23\int\limits_{0}^{3}\cos(x)\cos\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\cos\left((\tfrac23\pi n -1)x\right)+\cos\left((\tfrac23\pi n +1)x\right)\text dx\\ &=-\frac13\left(\frac{\sin\left((\tfrac23\pi n -1)x\right)}{\tfrac23\pi n -1}-\frac{\sin\left((\tfrac23\pi n +1)x\right)}{\tfrac23\pi n +1}\right)\Big|_0^3\\ &=\frac{\sin\left(2\pi n -3\right)}{3-2\pi n }+\frac{\sin\left(2\pi n +3\right)}{2\pi n +3}\\ &=\frac{\sin\left(3 \right)}{3-2\pi n }+\frac{\sin\left(3\right)}{2\pi n +3}\\ &=\sin\left(3 \right)\left(\frac{1}{3-2\pi n }+\frac{1}{2\pi n +3}\right)\\ &=\sin\left(3 \right)\left(\frac{3+2\pi n }{(3-2\pi n)(3+2\pi n) }+\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}\right)\\ &=\sin\left(3 \right)\left(\frac{6}{9-4\pi^2n^2}\right) \end{align*} \begin{align*} % b_n b_n&=\frac23\int\limits_{0}^{3}\cos(x)\sin\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\sin\left((\tfrac23\pi n+1)x\right)-\sin\left((\tfrac23\pi n-1)x\right)\text dx\\\ &=-\frac13\left(\frac{\cos\left((\tfrac23\pi n+1)x\right)}{\tfrac23\pi n+1}-\frac{\cos\left((\tfrac23\pi n-1)x\right)}{\tfrac23\pi n-1}\right)\Big|_0^3\\ &=\frac{1-\cos\left((2\pi n+3)\right)}{2\pi n+3}-\frac{1-\cos\left((2\pi n-3)\right)}{2\pi n-3}\\ &=\frac{1-\cos\left(3\right)}{2\pi n+3}-\frac{1-\cos\left(3\right)}{2\pi n-3}\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{1}{2\pi n+3}-\frac{1}{2\pi n-3}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{2\pi n-3}{(2\pi n+3)(2\pi n-3)}-\frac{2\pi n+3}{(2\pi n-3)(2\pi n+3)}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{6}{4\pi^2n^2-9}\right)\\ %&=\left(1-\cos\left(3\right)\right)\left(\frac{4\pi n}{4\pi^2n^2-9}\right)\\ \end{align*} \begin{align*} % S(x)\\ S(x)&=-\frac{\sin(3)}3+\sin\left(3 \right)\sum\limits_{n=1}^\infty\left(\frac{6}{9-4\pi^2n^2}\right)\cos\left(\tfrac23\pi n x\right)\\ &\qquad\qquad\qquad+\left(1-\cos\left(3\right)\right)\sum\limits_{n=1}^\infty\left(\frac{4\pi n}{4\pi^2n^2-9}\right)\sin\left(\tfrac23\pi n x\right)\\ &=\\ &=? \end{align*}

    • one year ago
  16. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    im going wrong somewhere here, because the correct Series should be \[S(x)=\frac{\sin(3)}3+6\sin(3)\sum\limits_{n=1}^\infty\frac{\cos(\tfrac23n\pi x)}{9-16n^2\pi^2}+4\pi(1-\cos(3))\sum\limits_{n=1}^\infty\frac{n\sin(\tfrac23n\pi x)}{4\pi^2n^2-9}\]

    • one year ago
  17. malevolence19 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Let me look over it.

    • one year ago
  18. malevolence19 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Okay \[=-\frac13\left(\frac{\cos\left((\tfrac23\pi n+1)x\right)}{\tfrac23\pi n+1}-\frac{\cos\left((\tfrac23\pi n-1)x\right)}{\tfrac23\pi n-1}\right)\Big|_0^3\] Since you integrate both sines they both acquire a negative so when you pull out the negative shouldn't that middle one be positive?

    • one year ago
  19. malevolence19 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    because when you redistribute it the signs are different.

    • one year ago
  20. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    it turns out i didn't use the trig formula correctly for a_n this somehow didnt matter , but for b_n it did should be like this \[\begin{align*} % a_n a_n&=\frac23\int\limits_{0}^{3}\cos(x)\cos\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\cos\left((1-\tfrac23\pi n )x\right)+\cos\left((1+\tfrac23\pi n)x\right)\text dx\\ &=-\frac13\left.\left(\frac{\sin\left((1-\tfrac23\pi n )x\right)}{1-\tfrac23\pi n }-\frac{\sin\left((1+\tfrac23\pi n )x\right)}{1+\tfrac23\pi n}\right)\right|_0^3\\ &=\frac{\sin\left(3-2\pi n \right)}{3-2\pi n }+\frac{\sin\left(3+2\pi n \right)}{3+2\pi n }\\ &=\frac{\sin\left(3 \right)}{3-2\pi n }+\frac{\sin\left(3\right)}{2\pi n +3}\\ &=\sin\left(3 \right)\left(\frac{1}{3-2\pi n }+\frac{1}{3+2\pi n}\right)\\ &=\sin\left(3 \right)\left(\frac{3+2\pi n }{(3-2\pi n)(3+2\pi n) }+\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}\right)\\ &=\left(\frac{6\sin\left(3 \right)}{9-4\pi^2n^2}\right)\\ &=\left(\frac{6\sin\left(3 \right)}{9-4\pi^2n^2}\right) \end{align*}\] \[\begin{align*} % b_n b_n&=\frac23\int\limits_{0}^{3}\cos(x)\sin\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\sin\left((1+\tfrac23\pi n)x\right)-\sin\left((1-\tfrac23\pi n)x\right)\text dx\\\ &=-\frac13\left.\left(\frac{\cos\left((1+\tfrac23\pi n)x\right)}{1+\tfrac23\pi n}-\frac{\cos\left((1-\tfrac23\pi n)x\right)}{1-\tfrac23\pi n}\right)\right|_0^3\\ &=\frac{1-\cos\left(3+2\pi n\right)}{2\pi n+3}-\frac{1-\cos\left(3-2\pi n\right)}{2\pi n-3}\\ &=\frac{1-\cos\left(3\right)}{3+2\pi n}-\frac{1-\cos\left(3\right)}{3-2\pi n}\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{1}{3+2\pi n}-\frac{1}{3-2\pi n}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}-\frac{3+2\pi n}{(3-2\pi n)(3+2\pi n)}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{-4\pi n}{9-4\pi^2n^2}\right)\\ &=\left(\frac{4\pi\left(1-\cos\left(3\right)\right)n}{4\pi^2n^2-9}\right)\\ \end{align*}\]

    • one year ago
  21. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    i think

    • one year ago
  22. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    how did i get a minus for a_0? lolsz

    • one year ago
  23. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    so\[S(x)=\frac{\sin(3)}3+6\sin(3)\sum\limits_{n=1}^\infty\frac{\cos(\tfrac23n\pi x)}{9-4n^2\pi^2}+4\pi(1-\cos(3))\sum\limits_{n=1}^\infty\frac{n\sin(\tfrac23n\pi x)}{4\pi^2n^2-9}\checkmark\]

    • one year ago
  24. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    • one year ago
    1 Attachment
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.