Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus Group Title

\(F\)ourier Series

  • 2 years ago
  • 2 years ago

  • This Question is Closed
  1. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    • 2 years ago
    1 Attachment
  2. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    please check my work for; •mathematical •typographical •formatting errors

    • 2 years ago
  3. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    • 2 years ago
  4. richyw Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    man I can't wait to learn this stuff

    • 2 years ago
  5. Outkast3r09 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i would but i'm studying for my physics final =/

    • 2 years ago
  6. mahmit2012 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    that was Fourier series. And also where is your works? That was you typed?

    • 2 years ago
  7. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    my work is in 1.pdf,

    • 2 years ago
  8. Dido525 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Can't wait till I learn tall this stuff.

    • 2 years ago
  9. oldrin.bataku Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Why wait? Basic Fourier series are rather intuitive and simple to figure out!

    • 2 years ago
  10. Aylin Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I didn't see any mistakes, though I didn't have time to check all of the integrations. I think it's good.

    • 2 years ago
  11. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    thanks !

    • 2 years ago
  12. Mathmuse Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    1 a) ii bounds on bn remain -pi to pi after you pull out f(x)

    • 2 years ago
  13. Mathmuse Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    didn't see anything else wrong with the integrals. this is a great primer for fourier. i like the complex form once i saw it

    • 2 years ago
  14. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Your ,... Right , thank-you so much @Mathmuse \[\begin{align*} b_n&=\frac1\pi\int\limits_{-\pi}^\pi f(x)\sin(nx)\text dx\\ &=\frac1\pi\int\limits_{\color{red}{\cancel{-\pi}}0}^\pi\sin(nx)\text dx\\ &=\dots \end{align*}\]

    • 2 years ago
  15. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\textbf 2 (b) \]\begin{align*} f(x)&=\cos(x),\qquad0<x<3 ,\qquad=f(x+3) \end{align*} \begin{align*} % a_0 a_0&=\frac23\int\limits_{0}^{3}\cos(x)\text dx\\ &=-\frac23\sin(x)\big|_0^3\\ &=-\frac23\sin(3) \end{align*} \begin{align*} % a_n a_n&=\frac23\int\limits_{0}^{3}\cos(x)\cos\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\cos\left((\tfrac23\pi n -1)x\right)+\cos\left((\tfrac23\pi n +1)x\right)\text dx\\ &=-\frac13\left(\frac{\sin\left((\tfrac23\pi n -1)x\right)}{\tfrac23\pi n -1}-\frac{\sin\left((\tfrac23\pi n +1)x\right)}{\tfrac23\pi n +1}\right)\Big|_0^3\\ &=\frac{\sin\left(2\pi n -3\right)}{3-2\pi n }+\frac{\sin\left(2\pi n +3\right)}{2\pi n +3}\\ &=\frac{\sin\left(3 \right)}{3-2\pi n }+\frac{\sin\left(3\right)}{2\pi n +3}\\ &=\sin\left(3 \right)\left(\frac{1}{3-2\pi n }+\frac{1}{2\pi n +3}\right)\\ &=\sin\left(3 \right)\left(\frac{3+2\pi n }{(3-2\pi n)(3+2\pi n) }+\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}\right)\\ &=\sin\left(3 \right)\left(\frac{6}{9-4\pi^2n^2}\right) \end{align*} \begin{align*} % b_n b_n&=\frac23\int\limits_{0}^{3}\cos(x)\sin\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\sin\left((\tfrac23\pi n+1)x\right)-\sin\left((\tfrac23\pi n-1)x\right)\text dx\\\ &=-\frac13\left(\frac{\cos\left((\tfrac23\pi n+1)x\right)}{\tfrac23\pi n+1}-\frac{\cos\left((\tfrac23\pi n-1)x\right)}{\tfrac23\pi n-1}\right)\Big|_0^3\\ &=\frac{1-\cos\left((2\pi n+3)\right)}{2\pi n+3}-\frac{1-\cos\left((2\pi n-3)\right)}{2\pi n-3}\\ &=\frac{1-\cos\left(3\right)}{2\pi n+3}-\frac{1-\cos\left(3\right)}{2\pi n-3}\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{1}{2\pi n+3}-\frac{1}{2\pi n-3}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{2\pi n-3}{(2\pi n+3)(2\pi n-3)}-\frac{2\pi n+3}{(2\pi n-3)(2\pi n+3)}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{6}{4\pi^2n^2-9}\right)\\ %&=\left(1-\cos\left(3\right)\right)\left(\frac{4\pi n}{4\pi^2n^2-9}\right)\\ \end{align*} \begin{align*} % S(x)\\ S(x)&=-\frac{\sin(3)}3+\sin\left(3 \right)\sum\limits_{n=1}^\infty\left(\frac{6}{9-4\pi^2n^2}\right)\cos\left(\tfrac23\pi n x\right)\\ &\qquad\qquad\qquad+\left(1-\cos\left(3\right)\right)\sum\limits_{n=1}^\infty\left(\frac{4\pi n}{4\pi^2n^2-9}\right)\sin\left(\tfrac23\pi n x\right)\\ &=\\ &=? \end{align*}

    • 2 years ago
  16. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    im going wrong somewhere here, because the correct Series should be \[S(x)=\frac{\sin(3)}3+6\sin(3)\sum\limits_{n=1}^\infty\frac{\cos(\tfrac23n\pi x)}{9-16n^2\pi^2}+4\pi(1-\cos(3))\sum\limits_{n=1}^\infty\frac{n\sin(\tfrac23n\pi x)}{4\pi^2n^2-9}\]

    • 2 years ago
  17. malevolence19 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Let me look over it.

    • 2 years ago
  18. malevolence19 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Okay \[=-\frac13\left(\frac{\cos\left((\tfrac23\pi n+1)x\right)}{\tfrac23\pi n+1}-\frac{\cos\left((\tfrac23\pi n-1)x\right)}{\tfrac23\pi n-1}\right)\Big|_0^3\] Since you integrate both sines they both acquire a negative so when you pull out the negative shouldn't that middle one be positive?

    • 2 years ago
  19. malevolence19 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    because when you redistribute it the signs are different.

    • 2 years ago
  20. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    it turns out i didn't use the trig formula correctly for a_n this somehow didnt matter , but for b_n it did should be like this \[\begin{align*} % a_n a_n&=\frac23\int\limits_{0}^{3}\cos(x)\cos\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\cos\left((1-\tfrac23\pi n )x\right)+\cos\left((1+\tfrac23\pi n)x\right)\text dx\\ &=-\frac13\left.\left(\frac{\sin\left((1-\tfrac23\pi n )x\right)}{1-\tfrac23\pi n }-\frac{\sin\left((1+\tfrac23\pi n )x\right)}{1+\tfrac23\pi n}\right)\right|_0^3\\ &=\frac{\sin\left(3-2\pi n \right)}{3-2\pi n }+\frac{\sin\left(3+2\pi n \right)}{3+2\pi n }\\ &=\frac{\sin\left(3 \right)}{3-2\pi n }+\frac{\sin\left(3\right)}{2\pi n +3}\\ &=\sin\left(3 \right)\left(\frac{1}{3-2\pi n }+\frac{1}{3+2\pi n}\right)\\ &=\sin\left(3 \right)\left(\frac{3+2\pi n }{(3-2\pi n)(3+2\pi n) }+\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}\right)\\ &=\left(\frac{6\sin\left(3 \right)}{9-4\pi^2n^2}\right)\\ &=\left(\frac{6\sin\left(3 \right)}{9-4\pi^2n^2}\right) \end{align*}\] \[\begin{align*} % b_n b_n&=\frac23\int\limits_{0}^{3}\cos(x)\sin\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\sin\left((1+\tfrac23\pi n)x\right)-\sin\left((1-\tfrac23\pi n)x\right)\text dx\\\ &=-\frac13\left.\left(\frac{\cos\left((1+\tfrac23\pi n)x\right)}{1+\tfrac23\pi n}-\frac{\cos\left((1-\tfrac23\pi n)x\right)}{1-\tfrac23\pi n}\right)\right|_0^3\\ &=\frac{1-\cos\left(3+2\pi n\right)}{2\pi n+3}-\frac{1-\cos\left(3-2\pi n\right)}{2\pi n-3}\\ &=\frac{1-\cos\left(3\right)}{3+2\pi n}-\frac{1-\cos\left(3\right)}{3-2\pi n}\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{1}{3+2\pi n}-\frac{1}{3-2\pi n}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}-\frac{3+2\pi n}{(3-2\pi n)(3+2\pi n)}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{-4\pi n}{9-4\pi^2n^2}\right)\\ &=\left(\frac{4\pi\left(1-\cos\left(3\right)\right)n}{4\pi^2n^2-9}\right)\\ \end{align*}\]

    • 2 years ago
  21. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    i think

    • 2 years ago
  22. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    how did i get a minus for a_0? lolsz

    • 2 years ago
  23. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    so\[S(x)=\frac{\sin(3)}3+6\sin(3)\sum\limits_{n=1}^\infty\frac{\cos(\tfrac23n\pi x)}{9-4n^2\pi^2}+4\pi(1-\cos(3))\sum\limits_{n=1}^\infty\frac{n\sin(\tfrac23n\pi x)}{4\pi^2n^2-9}\checkmark\]

    • 2 years ago
  24. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    • 2 years ago
    1 Attachment
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.