Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

\(F\)ourier Series

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

1 Attachment
please check my work for; •mathematical •typographical •formatting errors

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

man I can't wait to learn this stuff
i would but i'm studying for my physics final =/
that was Fourier series. And also where is your works? That was you typed?
my work is in 1.pdf,
Can't wait till I learn tall this stuff.
Why wait? Basic Fourier series are rather intuitive and simple to figure out!
I didn't see any mistakes, though I didn't have time to check all of the integrations. I think it's good.
thanks !
1 a) ii bounds on bn remain -pi to pi after you pull out f(x)
didn't see anything else wrong with the integrals. this is a great primer for fourier. i like the complex form once i saw it
Your ,... Right , thank-you so much @Mathmuse \[\begin{align*} b_n&=\frac1\pi\int\limits_{-\pi}^\pi f(x)\sin(nx)\text dx\\ &=\frac1\pi\int\limits_{\color{red}{\cancel{-\pi}}0}^\pi\sin(nx)\text dx\\ &=\dots \end{align*}\]
\[\textbf 2 (b) \]\begin{align*} f(x)&=\cos(x),\qquad0
im going wrong somewhere here, because the correct Series should be \[S(x)=\frac{\sin(3)}3+6\sin(3)\sum\limits_{n=1}^\infty\frac{\cos(\tfrac23n\pi x)}{9-16n^2\pi^2}+4\pi(1-\cos(3))\sum\limits_{n=1}^\infty\frac{n\sin(\tfrac23n\pi x)}{4\pi^2n^2-9}\]
Let me look over it.
Okay \[=-\frac13\left(\frac{\cos\left((\tfrac23\pi n+1)x\right)}{\tfrac23\pi n+1}-\frac{\cos\left((\tfrac23\pi n-1)x\right)}{\tfrac23\pi n-1}\right)\Big|_0^3\] Since you integrate both sines they both acquire a negative so when you pull out the negative shouldn't that middle one be positive?
because when you redistribute it the signs are different.
it turns out i didn't use the trig formula correctly for a_n this somehow didnt matter , but for b_n it did should be like this \[\begin{align*} % a_n a_n&=\frac23\int\limits_{0}^{3}\cos(x)\cos\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\cos\left((1-\tfrac23\pi n )x\right)+\cos\left((1+\tfrac23\pi n)x\right)\text dx\\ &=-\frac13\left.\left(\frac{\sin\left((1-\tfrac23\pi n )x\right)}{1-\tfrac23\pi n }-\frac{\sin\left((1+\tfrac23\pi n )x\right)}{1+\tfrac23\pi n}\right)\right|_0^3\\ &=\frac{\sin\left(3-2\pi n \right)}{3-2\pi n }+\frac{\sin\left(3+2\pi n \right)}{3+2\pi n }\\ &=\frac{\sin\left(3 \right)}{3-2\pi n }+\frac{\sin\left(3\right)}{2\pi n +3}\\ &=\sin\left(3 \right)\left(\frac{1}{3-2\pi n }+\frac{1}{3+2\pi n}\right)\\ &=\sin\left(3 \right)\left(\frac{3+2\pi n }{(3-2\pi n)(3+2\pi n) }+\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}\right)\\ &=\left(\frac{6\sin\left(3 \right)}{9-4\pi^2n^2}\right)\\ &=\left(\frac{6\sin\left(3 \right)}{9-4\pi^2n^2}\right) \end{align*}\] \[\begin{align*} % b_n b_n&=\frac23\int\limits_{0}^{3}\cos(x)\sin\left(\frac{\pi n x}{3/2}\right)\text dx\\ &=\frac13\int\limits_{0}^{3}\sin\left((1+\tfrac23\pi n)x\right)-\sin\left((1-\tfrac23\pi n)x\right)\text dx\\\ &=-\frac13\left.\left(\frac{\cos\left((1+\tfrac23\pi n)x\right)}{1+\tfrac23\pi n}-\frac{\cos\left((1-\tfrac23\pi n)x\right)}{1-\tfrac23\pi n}\right)\right|_0^3\\ &=\frac{1-\cos\left(3+2\pi n\right)}{2\pi n+3}-\frac{1-\cos\left(3-2\pi n\right)}{2\pi n-3}\\ &=\frac{1-\cos\left(3\right)}{3+2\pi n}-\frac{1-\cos\left(3\right)}{3-2\pi n}\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{1}{3+2\pi n}-\frac{1}{3-2\pi n}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{3-2\pi n}{(3+2\pi n)(3-2\pi n)}-\frac{3+2\pi n}{(3-2\pi n)(3+2\pi n)}\right)\\ &=\left(1-\cos\left(3\right)\right)\left(\frac{-4\pi n}{9-4\pi^2n^2}\right)\\ &=\left(\frac{4\pi\left(1-\cos\left(3\right)\right)n}{4\pi^2n^2-9}\right)\\ \end{align*}\]
i think
how did i get a minus for a_0? lolsz
so\[S(x)=\frac{\sin(3)}3+6\sin(3)\sum\limits_{n=1}^\infty\frac{\cos(\tfrac23n\pi x)}{9-4n^2\pi^2}+4\pi(1-\cos(3))\sum\limits_{n=1}^\infty\frac{n\sin(\tfrac23n\pi x)}{4\pi^2n^2-9}\checkmark\]
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question