• anonymous
A function f is defined on the interval [0,4], and it's derivative is f'(x) = e^sinx - 2cos3x (a) On what interval is f increasing? Justify your answer (b) At what value(s) of x does f have local maxima? Justify your answer. (c) How many points of inflection does that graph of f have? Justify your answer.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • richyw
(a) on the interval where \(f'(x)>0\) (b) it can only be a local maxima where \(f'(x)=0\). This is necessary but not sufficient to show that it is. (c)inflection points can occur where \(f''(x)=0\). Again this is necessary but not sufficient

Looking for something else?

Not the answer you are looking for? Search for more explanations.