Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

zepdrix

Calculus 3, Need help with Product Notation.

  • one year ago
  • one year ago

  • This Question is Closed
  1. zepdrix
    Best Response
    You've already chosen the best response.
    Medals 0

    So I have this annoying project I'm working on... I think I've gotten it pretty far. I end up the product of integrals like this. \[\int\limits_0^{\pi/2}\cos^2x dx \cdot \int\limits_0^{\pi/2}\cos^4x dx\cdot \int\limits_0^{\pi/2}\cos^6x dx \cdot\cdot\cdot \int\limits_0^{\pi/2}\cos^nx dx\] Which, if I've done my math correctly, simplifies to something like this,\[\left[\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\cdot\frac{3}{4}\right)\cdot\cdot\cdot\left(\frac{\pi}{4}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{n-1}{n}\right)\right]\]

    • one year ago
  2. zepdrix
    Best Response
    You've already chosen the best response.
    Medals 0

    Is there a way I can simplify this using the Product notation? I'm just not very familiar with it D:

    • one year ago
  3. zepdrix
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\huge \frac{\pi}{4}\quad \prod_{i=1}^{n-3}\quad\frac{i+2}{i+3}\]Like that maybe? :o bah I dunno what I'm doing.. lol

    • one year ago
  4. zepdrix
    Best Response
    You've already chosen the best response.
    Medals 0

    Hmm no I guess that doesn't work :O that gives me,\[\left[\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{n-1}{n}\right]\]It's not repeating the terms each time. Maybe there's not a nice way to simplify it? :x

    • one year ago
  5. abb0t
    Best Response
    You've already chosen the best response.
    Medals 0

    Fubini's theorem?

    • one year ago
  6. zepdrix
    Best Response
    You've already chosen the best response.
    Medals 0

    Hmm I don't remember that :O I should look that up. Oh I should have been a little clearer in the first post also. Each of those integrals is a different X. x1, x2 and so on :O

    • one year ago
  7. KingGeorge
    Best Response
    You've already chosen the best response.
    Medals 0

    Sorry for very late reply, but you can write it as \[\large \left(\frac{\pi}{4}\right)^{n-2}\quad \prod_{i=1}^{n-3}\quad\frac{i+2}{i+3}\]The product was correct, you just needed to factor out the \(\pi/4\) terms. If you don't want to do that, You could have written \[\large \frac{\pi}{4}\quad\prod_{i=1}^{n-3}\left[\frac{\pi}{4}\cdot\frac{i+2}{i+3}\right]\]

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.