anonymous
  • anonymous
use the limit definition of definite integral to evalute int_{0}^{1} (2x+3)dx help me please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
saifoo.khan
  • saifoo.khan
\[\int\limits_{0}^{1} (2x+3)dx\]Like this, right?
anonymous
  • anonymous
yes
anonymous
  • anonymous
and 0 in down

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

saifoo.khan
  • saifoo.khan
Now we have to integrate that then install the limits 1 and 0. Agree?
anonymous
  • anonymous
yes
saifoo.khan
  • saifoo.khan
Okay, so integral will be: \[[\frac{2x^2}{2}+ 3x]^1 _0\]
anonymous
  • anonymous
no please not in this way for rumin sum
anonymous
  • anonymous
saifoo.khan
  • saifoo.khan
Oh riemann sum.
anonymous
  • anonymous
yes
anonymous
  • anonymous
thank you for picture alredy i solve it like you and get 4 but in this case want to solve in rieman sum
anonymous
  • anonymous
please help me i wail waiting
anonymous
  • anonymous
please ????
sirm3d
  • sirm3d
\[f(x)=2x+3,a=0,b=1,\Delta x = \frac{1}{n}\]
sirm3d
  • sirm3d
\[x_i=a+i \Delta x\]compute \[f(x_i)\]and plug everything into \[\lim_{n \rightarrow +\infty}\sum_{i=1}^{n}f(x_i) \Delta x\]
anonymous
  • anonymous
ok then
anonymous
  • anonymous
i don't know what you mean for xi
sirm3d
  • sirm3d
|dw:1355579612133:dw|
anonymous
  • anonymous
so could you tell me how i will start the formula and with pluging number please
sirm3d
  • sirm3d
\[x_i=a+i \Delta x = 0 + i (\frac{1}{n})=i(\frac{1}{n})\] \[f(x)=2x+3\]\[f(x_i)=2(x_i)+3 = 2\left(i (\frac{1}{n})+3\right)=\frac{2}{n}i+3\]
sirm3d
  • sirm3d
sorry, the closing parenthesis ) should be before +3, not after +3.
sirm3d
  • sirm3d
\[f(x_i) \Delta x=\left(\frac{2}{n}i + 3\right)(\frac{1}{n})\]
sirm3d
  • sirm3d
just expand, apply the \(\lim_{n \rightarrow \infty} \sum_{i=1}^n\) on the expression, and evaluate the limit.
anonymous
  • anonymous
ok thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.