Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Read the two statements shown below. If the weather is not cold, Meg will go swimming. The weather is cold, or Meg will go swimming. Create truth tables for the logical form of the two statements (not to be submitted). Use the truth tables to determine whether the two statements are logically equivalent. Justify your answer.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

they are equivalent, as the truth tables are the same to turn \(P\to Q\) into an equivalent or statement \[P\to Q\equiv \lnot P\lor Q\]
here is the truth table for \(P\to Q\) \[\begin{array}{|c|c|c} P & Q & P\to{}Q \\ \hline T & T &T \\ T & F & F \\ F & T & T \\ F & F & T \\ \hline \end{array}\]
and here it is for \(\lnot P\lor Q\) \[\begin{array}{|c|c|c|c} P & Q & \lnot{}P & \lnot{}P\lor{}Q \\ \hline T & T & F & T \\ T & F & F & F \\ F & T & T & T \\ F & F & T & T \\ \hline \end{array}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you can see that the last columns are identical, so it is equivalent
Thanks you so much!! So if I wrote this in sentence form would this be correct These statements are equivalent, as their truth tables are the same. The P is true twice, and false twice for both statements, then the Q is T then F then T then F for both statements. The truth table column for P→Q is T, F, T, T as it is the same for ¬P∨Q.
yes although i would skip " The P is true twice, and false twice for both statements, then the Q is T then F then T then F for both statements." that is just how the truth table is constructed maybe put
?

Not the answer you are looking for?

Search for more explanations.

Ask your own question