If \(\lim_{x \rightarrow 0^{+}} f(x)=A\) and \(\lim_{x \rightarrow 0^{-}} f(x)=B\), find \(\lim_{x \rightarrow 0^{+}} f(x^3-x)\) How to start?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If \(\lim_{x \rightarrow 0^{+}} f(x)=A\) and \(\lim_{x \rightarrow 0^{-}} f(x)=B\), find \(\lim_{x \rightarrow 0^{+}} f(x^3-x)\) How to start?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hmmm maybe find out whether \(x^3-x\) is approaching 0 from the right or the left as x approaches 0 from the right
How....? FYI, I have the answer :\
What's the answer? lol

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

When in doubt, go with DNE, lol
you can reason as follows: for small positive values of \(x\) we have \(x^3
this is my best guess at any rate i am trying to think up a counter example, one where you wouldn't know the limit, but off the top of my head i cannot, so perhaps what i wrote is correct
in english, as \(x\to 0^+\) we have \(x^3-x\to 0^-\)
so my guess is \(B\) although i have a 50% chance of being right even if my reasoning is faulty
Nice *guess* :\
thnx
Assuming your way to do this question is correct. Similarly, for the question (in part b) \(\lim_{x \rightarrow 0^{-}} f(x^3-x)\) \[x^3-x>0\]So, as \(x \rightarrow 0^+\), \(x^3-x \rightarrow 0^{+}\). And it is A. Hmmm...
*Assume
is the limit of the function of a sum , equal to the sum of the limits of the function ?
As for part c, \[\lim_{x \rightarrow 0^{+}} f(x^2-x^4)\] \[x^2-x^4>0\] As \(x \rightarrow 0^{+}\), \(x^2-x^4\rightarrow 0^{+}\), so it is A. Seems this trick works, but I don't know why...
teach me how to do this

Not the answer you are looking for?

Search for more explanations.

Ask your own question