anonymous
  • anonymous
Show that \[e ^{x} \ge 1+x\] for all real numbers x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I have the idea that I could use the McLauren expansion for e^x \[e ^{x}=\sum_{n=0}^{\infty}\frac{ x ^{n} }{ n! }\]
anonymous
  • anonymous
So the two first expansions would be \[1+x\] but since I have to add the Lagrange reminder it would be proven bigger than 1+x
anonymous
  • anonymous
Would that be somewhat correct?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[e ^{x}=\sum_{n=0}^{1} \frac{ x ^{n} }{ n! }=1+x +\frac{ f ^{(n+1)}(\xi) }{(n+1)! }x ^{n+1}\] \[e ^{x}=\sum_{n=0}^{1} \frac{ x ^{n} }{ n! }=1+x +\frac{ f ^{(2)}(\xi) }{(2)! }x ^{2} \] \[f(x)=e ^{x}; f \prime(x)=e ^{x}; f \prime \prime(x)=e {^x}\] so that gives the remainder \[\frac{ e ^{\xi}x ^{2}}{2! }\] and \[e ^{x}=1+x+\frac{ e ^{\xi}x ^{2}}{2! }\ \ge 1+x\] Is this a genuine proof that\[e^{x}\ge 1+x\] ?
anonymous
  • anonymous
Oh forgot to write that \[\xi \in (0,x)\]
RadEn
  • RadEn
i think we can use by calculus principle...
RadEn
  • RadEn
differential calculus i meant
anonymous
  • anonymous
What about the Mclaurinexpansion I made, doesn't it prove the fact that it's bigger?
RadEn
  • RadEn
sorry i forgot about Mclaurinexpansion, i f by differential i got it
anonymous
  • anonymous
How did you show it using differentials?
RadEn
  • RadEn
e^x ≥ x + 1 e^x - 1 - x ≥ 0 let given f(x) = e^x - 1 - x, so f '(x) = e^x - 1 criticals points of f, hapended when saat f '(x) = 0 so, e^x - 1 = 0 get x = 0 to knowing the kind (max or min) of f, use the 2nd derivative so, f ''(x) = e^x for x=0, gives f ''(0) = 1 > 0 because f ''(0) > 0, therefore its kind is minimum the minimum value of f is f(0) = e^0 - 1 - 0 = 0 because f has the minimum value, is 0 so,, obviously f(x) ≥ 0 e^x - 1 - x ≥ 0 e^x ≥ x + 1 (proof) :)
anonymous
  • anonymous
Oh that's a good way to show it, pretty simple to, thank you RadEn! :)
RadEn
  • RadEn
very, welcome.... :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.