anonymous
  • anonymous
sin2x(cot x + 1)2= cos2x(tanx +1)2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
saifoo.khan
  • saifoo.khan
Do we have to prove left side = right side?
anonymous
  • anonymous
yeah its a trig identity
saifoo.khan
  • saifoo.khan
\[\Large \sin2x(\cot x + 1)^2= \cos2x(tanx +1)2 \]Like this?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
no, \[\sin^2x(cotx+1)^2=\cos^2x(tanx+1)^2\]
saifoo.khan
  • saifoo.khan
@slaaibak
slaaibak
  • slaaibak
Lets start with the LHS: \[\sin^2x ({\cos x \over \sin x} + 1)^2 = \sin^2 x ( {\cos^2x \over \sin^2 x} + 2 {\cos x \over \sin x} + 1 ) = \cos^2x + 2 \sin x \cos x + \sin^2 x\] now factor out a cos^2 x \[\cos^2 x(1 + 2{\sin x \over \cos x} + {\sin^2 x \over \cos ^2 x}) = \cos^2x( 1+ {\sin x \over \cos x})^2 = \cos^2 x(1 + \tan x)^2\]
anonymous
  • anonymous
ok thanks i get it now, can you help me on this question too; \[\frac{ 1+cosx }{ sinx }=\cot \frac{ x}{ 2 }\]
slaaibak
  • slaaibak
Lets start with the RHS, looks easier: \[\cot {x \over 2} = {\cos {x \over 2} \over \sin {x \over 2}}\] but \[\cos x = 2\cos^2 {x \over 2} - 1 \rightarrow {{\cos x + 1 \over 2}} = \cos^2{x \over 2}\] and \[\sin x = 2\cos{x \over 2} \sin{x \over 2} \rightarrow \sin{x \over 2} = {\sin x \over 2\cos{x \over 2}}\] \[\cot {x \over 2} = {\cos {x \over 2} \over \sin {x \over 2}} = {2\cos ^2 {x \over 2} \over \sin x}\] now replace cos^2 (x/2) with the thing I gave above

Looking for something else?

Not the answer you are looking for? Search for more explanations.