anonymous
  • anonymous
∫(24lnx)/x
Calculus1
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Callisto
  • Callisto
\[∫(24lnx)/xdx=∫(24lnx)d(lnx)=...\]
Callisto
  • Callisto
Hmm.. The idea is to let u = lnx , du= ... dx Then do the substitution and integrate it.
anonymous
  • anonymous
right now I have 24x +xlnx-1 + lnx

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1355723590484:dw|
anonymous
  • anonymous
can you integrate that?
anonymous
  • anonymous
|dw:1355723775094:dw|
anonymous
  • anonymous
integrate from there
anonymous
  • anonymous
|dw:1355723857099:dw|
anonymous
  • anonymous
is that right
anonymous
  • anonymous
|dw:1355723958311:dw|
anonymous
  • anonymous
ok integrate of ln x = xlnx -1 ?
anonymous
  • anonymous
do u subsitution
anonymous
  • anonymous
24 integrate lnx 1/x is final ?
anonymous
  • anonymous
|dw:1355724026428:dw|
anonymous
  • anonymous
thankss ! that made everything much clear, but how did you know to use the u^2/ 2?
anonymous
  • anonymous
you have to add 1 to the power then divided..let say if you have \[\int\limits(x^2)\] when you intergrate it will be \[\frac{ x ^{2+1} }{ 2+1 }\] \[\frac{ x^3 }{ 3 }\]
Callisto
  • Callisto
|dw:1355724577063:dw|
anonymous
  • anonymous
Thanks fellas
anonymous
  • anonymous
like @Callisto says dont forget the C

Looking for something else?

Not the answer you are looking for? Search for more explanations.