## lovelymultani 2 years ago ∫(24lnx)/x

1. Callisto

$∫(24lnx)/xdx=∫(24lnx)d(lnx)=...$

2. Callisto

Hmm.. The idea is to let u = lnx , du= ... dx Then do the substitution and integrate it.

3. lovelymultani

right now I have 24x +xlnx-1 + lnx

4. winterfez

|dw:1355723590484:dw|

5. winterfez

can you integrate that?

6. winterfez

|dw:1355723775094:dw|

7. winterfez

integrate from there

8. lovelymultani

|dw:1355723857099:dw|

9. lovelymultani

is that right

10. winterfez

|dw:1355723958311:dw|

11. lovelymultani

ok integrate of ln x = xlnx -1 ?

12. winterfez

do u subsitution

13. lovelymultani

24 integrate lnx 1/x is final ?

14. winterfez

|dw:1355724026428:dw|

15. lovelymultani

thankss ! that made everything much clear, but how did you know to use the u^2/ 2?

16. winterfez

you have to add 1 to the power then divided..let say if you have $\int\limits(x^2)$ when you intergrate it will be $\frac{ x ^{2+1} }{ 2+1 }$ $\frac{ x^3 }{ 3 }$

17. Callisto

|dw:1355724577063:dw|

18. lovelymultani

Thanks fellas

19. winterfez

like @Callisto says dont forget the C