Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Find the domain of f(x)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I know the square root argument must be grater to 0 but I can solve the inside for x> 0 .

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\sqrt{-x^4+3x^2+4}+1\]
That's the right one sorry :P .
\[\sqrt{-x^{4}+3x^{2}+4}\] \[-x^{4}+3x^{2}+4 \ge 0\]I'm going to try to divide the equation by (x^2+1)\[\frac{ -x^{4}+3x^{2}+4 }{ x^{2}+1 }=-(x^{2}-4)=-(x+2)(x-2)\](The above was done on paper since it would be too tedious to put in the calculation here). But this shows that \[-x^{4}+3x^{2}+4=-(x+2)(x-2)(x^{2}+1) \ge 0\]You should be able to get the rest. (x^2+1 was attempted since all of the powers of x were divisible by 2, and all of the coefficients had 1 as their only common factor).
Thanks a lot :) .

Not the answer you are looking for?

Search for more explanations.

Ask your own question