how to find the rank of a matrix?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

how to find the rank of a matrix?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\left[\begin{matrix}1 & -1 &2\\ 3 & -3&6\\-2&2&4\end{matrix}\right]\]
even i want to learn this.. so *bookmark*
Do the gauss jordan elimination method and check how many leading ones there are

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

""Suppose that A is a matrix then the row space of A and the column space of A will have the same dimension. We call this common dimension the rank of A and denote it by rank (A)." http://tutorial.math.lamar.edu/Classes/LinAlg/FundamentalSubspaces.aspx
if the row and col have different dimensions, then rank (A) is equal or smaller than the smaller value
By inspection, it would be 2. Row 2 is a multiple of row one. row 3 is not a multiple or linear combination of row 1 or 2 so therefore, row 1 and 3 are linearly independent. hence, rank = 2
As people have suggested, get it down to reduced form and see how many leading 1's there is :) that is the rank.
So if i get something like 1 4 6 0 3 4 0 0 0 rank is 2? or 2 5 7 0 0 0 0 0 0 rank is 1? Or 1 4 5 1 0 0 1 0 4 rank is 3?
no. the third one is incorrect
given an nxm matrix rankA + nullA = m
third would be 2?
soz third one is correct. it is 3
1 4 5 1 0 0 1 0 4 1 0 0 1 4 5 1 0 4 1 0 0 0 4 5 0 0 4
okay, i think i undertand now so we reduce to row echelon form and do leading 1's then count the smallest number of rows?
so 1 0 0 0 4 5 0 0 4 becomes 1 0 0 0 1 5/4 0 0 1 and that has three 1's so rank is 3
counting leading ones would suffice. yes, above is correct
thanks all!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question