anonymous
  • anonymous
Is the serie \[\sum_{n=0}^{\infty} (-1)^{n}\frac{ n+2 }{ 3^{n} }\] convergent or divergent? Calculate is't value. \[\lim_{n \rightarrow \infty} \left| \left( \frac{ (-1)^{n+1}(n+3) }{ 3^{n+1} } \right)\left( \frac{ 3^{n} }{ (-1)^{n}(n+2) } \right) \right|\] \[\frac{ 1 }{ 3 } \lim_{n \rightarrow \infty} \left| \frac{ n+3 }{n+2 } \right|=\frac{ 1 }{ 3 }\] \[\frac{ 1 }{ 3 } < 1; Convergent\] But how do I calculate it's value?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@phi
phi
  • phi
I would try summing the negative terms and the positive terms
anonymous
  • anonymous
Don't really know what you mean, should I expand the serie a couple of times then sum?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
\[\sum_{n=0}^{\infty} (-1)^{n}\frac{ n+2 }{ 3^{n} }\] \[\sum_{n=0}^{\infty} n\left(\frac{-1}{ 3 }\right)^n+2\sum_{n=0}^{\infty} \left(\frac{-1}{ 3 }\right)^n\]
Zarkon
  • Zarkon
\[2\sum_{n=0}^{\infty} \left(\frac{-1}{ 3 }\right)^n\] is just a geometric sum...should be easy
Zarkon
  • Zarkon
for \[\sum_{n=0}^{\infty} n\left(\frac{-1}{ 3 }\right)^n\] write as \[\frac{-1}{3}\sum_{n=0}^{\infty} n\left(\frac{-1}{ 3 }\right)^{n-1}\] then as \[\frac{-1}{3}\sum_{n=0}^{\infty} n\left(x\right)^{n-1}\] integrate this wrt x then compute the sum... then differentiate and plug in -1/3
Zarkon
  • Zarkon
I get \[\frac{-3}{16}+\frac{3}{2}=\frac{21}{16}\]
anonymous
  • anonymous
Your answer is correct according to my key, what's the metod you're using named? I think I need to study the concept a bit closer
Zarkon
  • Zarkon
if a series converges uniformly then it can integrated or differentiated term by term
anonymous
  • anonymous
I think I've found the section in my book now, don't get the concept yet but now I know where to start working on it. Thank you!
Zarkon
  • Zarkon
good

Looking for something else?

Not the answer you are looking for? Search for more explanations.