anonymous
  • anonymous
please help me everyone . what is the derivative of: f(t)=20[1-cos^2(t/1000pi)]
Precalculus
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Yes that would be the case if pi was in the numerator, but I think you said pi was in the denominator though?
anonymous
  • anonymous
\[f(t)=20[1-\cos^2(\frac{ t }{ 1000\pi })\] like that ^
anonymous
  • anonymous
\[\frac{ \sin(\frac{ x }{ 500\pi }) }{ 50\pi }\] is this your answer?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[f(t) = 20 - 20\cos ^{2}(t/(1000\pi))\] \[f'(t) = 0 - 20 * 2\cos (t/(1000\pi)) * -\sin (t/(1000\pi)) * (1/(1000\pi))\] \[f`(t) = 20/1000\pi * 2\cos(t/1000\pi)*\sin(t/1000\pi)\] Use identity sin (2x) = 2sinxcosx \[f'(t) = 1/50\pi * \sin (2*t/1000\pi)\]
anonymous
  • anonymous
that acually looks right to me. ^
anonymous
  • anonymous
You can also check your answers by punching the equations into wolframalpha.com
anonymous
  • anonymous
beautiful, thank you.
anonymous
  • anonymous
No problem, good luck!

Looking for something else?

Not the answer you are looking for? Search for more explanations.