please help me everyone . what is the derivative of: f(t)=20[1-cos^2(t/1000pi)]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

please help me everyone . what is the derivative of: f(t)=20[1-cos^2(t/1000pi)]

Precalculus
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Yes that would be the case if pi was in the numerator, but I think you said pi was in the denominator though?
\[f(t)=20[1-\cos^2(\frac{ t }{ 1000\pi })\] like that ^
\[\frac{ \sin(\frac{ x }{ 500\pi }) }{ 50\pi }\] is this your answer?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[f(t) = 20 - 20\cos ^{2}(t/(1000\pi))\] \[f'(t) = 0 - 20 * 2\cos (t/(1000\pi)) * -\sin (t/(1000\pi)) * (1/(1000\pi))\] \[f`(t) = 20/1000\pi * 2\cos(t/1000\pi)*\sin(t/1000\pi)\] Use identity sin (2x) = 2sinxcosx \[f'(t) = 1/50\pi * \sin (2*t/1000\pi)\]
that acually looks right to me. ^
You can also check your answers by punching the equations into wolframalpha.com
beautiful, thank you.
No problem, good luck!

Not the answer you are looking for?

Search for more explanations.

Ask your own question