anonymous
  • anonymous
For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100)+1, then p is A. between 2 and 10 B. between 10 and 20 C. between 20 and 30 D. between 30 and 40 E. greater than 40
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sirm3d
  • sirm3d
\[\Huge h(n)=2^{n/2} \cdot (n/2)!\] the smallest prime number that is not a repeat is 29.
shubhamsrg
  • shubhamsrg
h(100) = 2*4*6...100 if you observe properly, it is written (2^50)*(1*2..50) or (2^50)*(50 !) we are concerned about (2^50)*(50!) +1 note that h(100) and h(100) +1 are both consecutive nos. , thus they dont share ANY common factor apart from 1 . h(100) clearly has all prime factors from 1 to 50 as its factors, thus h(100)+1 cant have those as factors. hence ans would be greater than 50 according to me, or E
sirm3d
  • sirm3d
ah, h(100) + 1. i missed that +1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
though for that part u r absolutely correct

Looking for something else?

Not the answer you are looking for? Search for more explanations.