Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

If the product of all the unique positive divisors of n, a positive integer which is not a perfect cube, is n^2, then the product of all the unique positive divisors of n^2 is (A) n^3 (B) n^4 (C) n^6 (D) n^8 (E) n^9

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Seems to me that your new "n^2" term behaves just like the other "n" so you can "plug it in" and follow through with the same logic and see that (n) => (n)^2 (n^2) => (n^2)^2
Reason through this and give "n" an actual number that works, like 10. 10's factors are 1, 10, 2, and 5 right? 1*10*2*5=10*10=10^2 Now let's see about 100 1, 100, 2, 50, 25, 4, 5, 20 1*100*2*50*25*4... Well that doesn't equal 10^4 so my logic is flawed. Maybe this helps though in some way?
All positive integers n which equal to n=p_1*p_2, where p_1 and p_2 are distinct primes satisfy the condition in the stem. Because the factors of n in this case would be: 1, p_1, p_2, and n itself, so the product of the factors will be 1*(p_1*p_2)*n=n^2. (Note that if n=p^3 where p is a prime number also satisfies this condition as the factors of n in this case would be 1, p, p^2 and n itself, so the product of the factors will be 1*(p*p^2)*n=p^3*n=n^2, but we are told that n is not a perfect cube, so this case is out, as well as the case n=1.) For example if n=6=2*3 --> the product of all the unique positive divisors of 6 will be: 1*2*3*6=6^2; Or if n=10=2*5 --> the product of all the unique positive divisors of 10 will be: 1*2*5*10=10^2; Now, take n=10 --> n^2=100 --> the product of all the unique positive divisors of 100 is: 1*2*4*5*10*20*25*50*100=(2*50)*(4*25)*(5*20)*10*100=10^2*10^2*10^2*10*10^2=10^9

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

since you ,without loss of generality,correctly let p_1 * p_2 = n we see, n^2 = (p_1)^2 * (p_2)^2 so all factors of n^2 would be 1, p_1 , p_2 , p_1* p_2, p_1 ^2 , p_2 ^2, (p_1)^2 p_2 , (p_2)^2 p_1 , (p_1)^2 (p_2)^2 .. multiplying all , you should get n^9

Not the answer you are looking for?

Search for more explanations.

Ask your own question