anonymous
  • anonymous
I need to calculate Integral (F . dr), where F(x,y,z) = (z^2, xz, 2xy) and C is the curve obtained from the intersection of the surface z=1-y^2, when z>=0 and the plane 2x+3z=6. I'm trying that one for over 5 hours already...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
richyw
  • richyw
hmm. what have you done so far?
anonymous
  • anonymous
so far I've made a sketch of the surface, I calculated curl F and I applied the stoke's theorem to get Integral () dS. I have no idea how to move on.
richyw
  • richyw
wait why is that integral a vector? sorry I am just learning this stuff right now. I'm not even in vector calculus yet. just the basics from multivariable calc. I would like to see how to do this as well!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Over 8 hours trying to solve this problem, still nothing :( Well, it's a vector integral because the integral is not over a scalar function, but over a vector field ... this stuff is complex. I'll have an exam tomorrow morning (my final) and I can see I'm completely screwed ...
anonymous
  • anonymous
it looks like I can transform this integral I'm left with using this relation : (attached image) I just don't know how to apply this into my integral :(
anonymous
  • anonymous
mainly because I don't know how to calculate the normal of a surface.

Looking for something else?

Not the answer you are looking for? Search for more explanations.