Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

iouri.gordon

  • 2 years ago

Hey guys, I am having troubles solving 1A-6 (b) in Problem Set 1, Single Variable Calculus. Any ideas?

  • This Question is Closed
  1. dinnertable
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    Alright so this problem has to do quite a bit with trigonometric identities.To start, write the question as an equation.\[sinx - cosx = Asin(x+c)\]The first thing that comes to mind is that it's possible to rewrite the right side using the compound angle formula.\[sinx - cosx = Asin(x+c)\]\[sinx - cosx = Asinxcosc + Acosxsinc\]From here on it's possible to make a system of equations:\[Asinxcosc = sinx\]\[Acosc = 1\] and\[Acosxsinc = -cosx\]\[Asinc = -1\]Now what we're going to do here is make them look like some sort of pythagorean identity so as to simplify them down to one variable.\[Acosc = 1\]\[A^2\cos^2c = 1\]and the other equation,\[Asinc = -1\]\[A^2\sin^sc = 1\]Now the next part may not be quite obvious, but we can solve for A by adding both of the equations together.\[A^2\sin^2c + A^2\cos^2c = 2\]\[A^2(\sin^2c + \cos^2c) = 2\]\[A^2(1) = 2\]\[A=\sqrt{2}\]In the first step, we added together both equations which was in equality to 2. Next we just factored out the A squared so that we could use the pythagorean identity to simplify the equation, and solve for A. So now that we have A solved, we need to solve for c. Rewrite the original equation with the A value that we solved.\[\sqrt{2}sinxcosc + \sqrt{2}cosxsinc = sinx - cosx\]Using the same two system of equations we can now solve for c:\[\sqrt{2}sinxcosc = sinx\]\[\sqrt{2}cosc = 1\]\[cosc = \frac{ 1 }{ \sqrt{2} }\]\[c = \frac{ \pi }{ 4 }, \frac{7\pi}{4}\]Now for the other equation:\[\sqrt{2}cosxsinc = -cosx\]\[\sqrt{2}sinc = -1\]\[sinc = \frac{-1}{\sqrt{2}}\]\[c = \frac{5\pi}{4}, \frac{7\pi}{4}\]Because c cannot equal two values, we will use the related angles for both equations. \[sinx - cosx = \sqrt{2}sinxcos\frac{7\pi}{4} + \sqrt{2}cosxsin\frac{7\pi}{4}\]\[sinx - cosx = \sqrt{2}\sin(x + \frac{7\pi}{4})\]Although this is right, it is one of the many ways you can express it because sine is periodic. Essentially, this is equivalent to:\[sinx - cosx = \sqrt{2}\sin(x-\frac{\pi}{4})\]

  2. dinnertable
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    Of course once you understand the main concept of the problem, many shortcuts can be made.

  3. dinnertable
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 4

    Here's a diagram showing the related angles of 7pi/4 and pi/4.

    1 Attachment
  4. Timer
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Yo bro, your a genius

  5. DoobleD
    • 11 months ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thank you, understood with your explanation!

  6. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.