Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

DuncanMarshall

  • 3 years ago

How come we can turn (((1 / (x + h)) - (1 / x)) / h) into ((1 / h) * ((x - (x + h)) / (x + h) * x)) I don't understand the steps in between the two.

  • This Question is Open
  1. adamshai
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    The question is why \[\frac{ \frac{ 1 }{ x+h } + \frac{ 1 }{ x } }{ h } = \frac{ 1 }{ h } * \left[ \frac{ x - (x+h) }{ (x+h) * x } \right] \] Answer: \[\frac{ \frac{ 1 }{ x+h } - \frac{ 1 }{ x } }{ h } = \frac { 1 }{ h } * \left[ \frac{ 1 }{ x+h } - \frac{ 1 }{ x } \right] \\ = \frac { 1 }{ h } * \left[ \frac{ 1 * x }{ (x+h) * x } - \frac{ 1* (x+h) }{ x * (x+h) } \right] \\ = \frac { 1 }{ h } * \left[ \frac{ x }{ (x+h) * x } - \frac{ (x+h) }{ (x+h) * x } \right] \\ = \frac { 1 }{ h } * \left[ \frac{ x - (x+h) }{ (x+h) * x } \right]\]

  2. DuncanMarshall
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thanks.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy