mathslover
  • mathslover
The radius of the first circle is 1 cm, that of the second is 1/2 cm and that of the third is 1/4 cm and so on indefinitely. The sum of the areas of the circles is ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
\[\pi + {\pi \over 4} + {\pi \over 16}\cdots\]
ParthKohli
  • ParthKohli
Hmm...
mathslover
  • mathslover
You mean to say like this : \[\large{S = \pi + \frac{\pi }{4} + \frac{\pi}{16} + .... }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathslover
  • mathslover
But what next?
ParthKohli
  • ParthKohli
I think it's approaching something.
mathslover
  • mathslover
Well i think we can take : infinite geometric progression ...
mathslover
  • mathslover
pi ( 1 + 1/4 + 1/16 + .... )
ParthKohli
  • ParthKohli
Where did you get this question?
ParthKohli
  • ParthKohli
http://en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B_1/256_%2B_%C2%B7_%C2%B7_%C2%B7
mathslover
  • mathslover
I have a book, Math IQ Challenge
ParthKohli
  • ParthKohli
It'd be \(\dfrac{4}{3}\pi\)
ParthKohli
  • ParthKohli
lol - we solved it before asking it on M.SE :)
mathslover
  • mathslover
:) \[\large{ S _\infty = \frac{a}{1-r}}\] -- infinite geometric series a = 1 r = 1/4 1 / ( 1- 1/4 ) = 1/ (3/4) = 4/3
mathslover
  • mathslover
Yeah ... thanks @ParthKohli

Looking for something else?

Not the answer you are looking for? Search for more explanations.