A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 4 years ago

Confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x. f(x) = x-9/x+5 and g(x) = -5x-9/x-1 PLEASE HELP I GIVE MEDALS

  • This Question is Open
  1. anonymous
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    So, remember when you find the inverse of a function you turn the "f(x)" in y, then set that equal to the function, then switch the place of y and x, then solve for y. (get y by itself) Thats how you would get g(x) (assuming we aren't given g(x) like in your problem). Thus, to check if the given functions are inverses of each other, find the composite of the f(x) "f of x" and g(x) "g of x", which is the same as [f o g], f(g(x)) read "f of (g of x)" (remember g(x) is read as "g of x".) Now, \[f(x)=\frac{ x-9 }{ x+5 }\] and \[g(x)=\frac{ 5x+9 }{ x-1 }\] \[f(g(x))\] NOTICE: \[g(x)=\frac{ 5x+9 }{ x-1 }\] So, just replace it. \[f(\frac{ 5x+9 }{ x-1 })= \frac{ x-9 }{ x+5 }\] (remember: if f(x)=x+3, find what x=2 is?... f(2)=2+3 f(2)=5 ) Do the with the eq \[f(\frac{ 5x+9 }{ x+1 })=\frac{(\frac{ -5x-9 }{ x+1 })-9 }{ (\frac{ -5x-9 }{ x+1 })+5 }\] Then, solve, if f(g(x))=x then, they are inverse. Though, it would be a lot easier to just find the inverse of f(x), and compare it to g(x)

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.