anonymous
  • anonymous
Confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x. f(x) = x-9/x+5 and g(x) = -5x-9/x-1 PLEASE HELP I GIVE MEDALS
Precalculus
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
So, remember when you find the inverse of a function you turn the "f(x)" in y, then set that equal to the function, then switch the place of y and x, then solve for y. (get y by itself) Thats how you would get g(x) (assuming we aren't given g(x) like in your problem). Thus, to check if the given functions are inverses of each other, find the composite of the f(x) "f of x" and g(x) "g of x", which is the same as [f o g], f(g(x)) read "f of (g of x)" (remember g(x) is read as "g of x".) Now, \[f(x)=\frac{ x-9 }{ x+5 }\] and \[g(x)=\frac{ 5x+9 }{ x-1 }\] \[f(g(x))\] NOTICE: \[g(x)=\frac{ 5x+9 }{ x-1 }\] So, just replace it. \[f(\frac{ 5x+9 }{ x-1 })= \frac{ x-9 }{ x+5 }\] (remember: if f(x)=x+3, find what x=2 is?... f(2)=2+3 f(2)=5 ) Do the with the eq \[f(\frac{ 5x+9 }{ x+1 })=\frac{(\frac{ -5x-9 }{ x+1 })-9 }{ (\frac{ -5x-9 }{ x+1 })+5 }\] Then, solve, if f(g(x))=x then, they are inverse. Though, it would be a lot easier to just find the inverse of f(x), and compare it to g(x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.