Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Turner

  • 2 years ago

The figure shows a circle with center O and two congruent chords AB and CD. To prove that the chords are equidistant from the center, it has to be proved that segment OS is congruent to segment OT. Which of these is a step that can be used in the proof?

  • This Question is Closed
  1. Turner
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Statement: Segment OS is congruent to segment OT. Reason: Radii of the same circle are congruent. Statement: Segment OS is congruent to segment SD. Reason: Congruent sides of isosceles triangle OSD. Statement: Triangle ODS is congruent to triangle OBT. Reason: ASA triangle congruency principle. Statement: Segment OS is congruent to segment OT. Reason: Corresponding parts of congruent triangles are congruent.

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.