UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} % S(x) S(x) &=\frac{2}\pi\left(1+2\sum\limits_{r=1}^\infty\frac{\cos((2r-1)x)}{1-(2r-1)^2}\right)\\ \\ S(\tfrac\pi2)&=\frac{2}\pi\left(1+2\sum\limits_{r=1}^\infty\frac{\cos((\pi r-\tfrac\pi2)}{1-(2r-1)^2}\right)\\ 1&=\frac{2}\pi\left(1+2\sum\limits_{r=1}^\infty\frac{\sin(\pi r)}{1-(2r-1)^2}\right)\\ \frac\pi2-1&=2\sum\limits_{r=1}^\infty\frac{\sin(\pi r)}{1-(2r-1)^2}\\ \frac\pi4-\frac12&=\sum\limits_{r=1}^\infty\frac{\sin(\pi r)}{1-(2r-1)^2}\\ \end{align*}\]
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

UnkleRhaukus
  • UnkleRhaukus
um , i think i made a mistake somewhere
experimentX
  • experimentX
sin r pi = 0
UnkleRhaukus
  • UnkleRhaukus
well sine of πr is going to be zero, so

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
so the last two lines are not true
UnkleRhaukus
  • UnkleRhaukus
and the third line isnt right either
experimentX
  • experimentX
the second line is not true .. check again.
UnkleRhaukus
  • UnkleRhaukus
is the first line right?
experimentX
  • experimentX
sorry ... it seems i made mistake I didn't see 2r there. I wouldn't now about the first line since it is your question. What is your function??
experimentX
  • experimentX
why did you put \( S(\pi/2) = 1 \)
UnkleRhaukus
  • UnkleRhaukus
the function is f(x)=|sin(x)|
phi
  • phi
I think the summation is mostly zeros, except for r=1 where it is 0/0 it's pi at r=1 ?
UnkleRhaukus
  • UnkleRhaukus
hmm i forgot it could do that
UnkleRhaukus
  • UnkleRhaukus
so have i made any mistake then?
phi
  • phi
as far as I can see, your very first line, evaluated at x=pi/2 gives 2/pi *(1 + 2*pi/4) = 2/pi +1
phi
  • phi
maybe you don't want that leading 1?
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} % a_0 a_0&=\frac1\pi\int\limits_{-\pi}^\pi |\sin(x)| \,\text dx\\ &=\frac2\pi\int\limits_{0}^\pi \sin(x) \,\text dx\qquad\text{(even integrand)}\\ &=\frac{2}\pi\left(-\cos(x)\Big|_0^\pi\right)\\ &=\frac{2(-(-1-1))}\pi \\ &=\frac{4}\pi \end{align*}\] \begin{align*} % a_n a_n&=\frac1\pi\int\limits_{-\pi}^\pi|\sin(x)|\cos(nx)\,\text dx\\ &=\frac2\pi\int\limits_{0}^\pi\sin(x)\cos(nx)\,\text dx\qquad\text{(even integrand)}\\ &=\frac2\pi\int\limits_{0}^\pi\frac{\sin(x+nx)-\sin(x-nx)}2\,\text dx\\ &=\frac1\pi\int\limits_{0}^\pi{\sin\left((1+n)x\right)-\sin\left((1-n)x\right)}\,\text dx\\ &=\frac1\pi\left(\frac{-\cos((1+n)x)}{1+n}-\frac{\cos((1-n)x))}{1-n}\Big|_0^\pi\right)\\ &=\frac1\pi\left(\frac{1-\cos((1+n)\pi)}{1+n}+\frac{1-\cos((1-n)\pi))}{1-n}\right)\\ &=\frac1\pi\left(\frac{1-(-1)^{n+1}}{1+n}+\frac{1-(-1)^{n-1})}{1-n}\right)\\ \\&=\frac1\pi\left(\frac{1+(-1)^{n}}{1+n}+\frac{1+(-1)^{n})}{1-n}\right)\\ \end{align*} \begin{align*} % b_n b_n&=\frac1\pi\int_{-\pi}^\pi|\sin(x)|\sin(nx)\,\text dx\\ &=0\qquad\text{(odd integrand)} \end{align*} \begin{align*} % S(x) S(x)&=\frac{2}\pi+\frac1\pi\sum\limits_{n=1}^\infty\left(\frac{1+(-1)^{n}}{1+n}+\frac{1+(-1)^{n})}{1-n}\right)\cos(nx)\\ &=\frac{2}\pi+\frac2\pi\sum\limits_{n=2,4,6\dots}^\infty\left(\frac{1}{1+n}+\frac{1}{1-n}\right)\cos(nx)\\ &=\frac{2}\pi\left(1+2\sum\limits_{n=2,4,6\dots}^\infty\frac{\cos(nx)}{1-n^2}\right)\\ &=\frac{2}\pi\left(1+2\sum\limits_{r=1}^\infty\frac{\cos((2r-1)x)}{1-(2r-1)^2}\right)\\ \\&=\frac4\pi\left(\frac12-\frac{\cos(2x)}{3}+\frac{\cos(4x)}{15}+\frac{\cos(6x)}{35}+\dots\right) \end{align*} \]
experimentX
  • experimentX
a_0 = 2/pi http://www.wolframalpha.com/input/?i=integrate+|sin%28x%29|%2Fpi+from+0+to+pi
UnkleRhaukus
  • UnkleRhaukus
http://www.wolframalpha.com/input/?i=%E2%88%AB+%7Csin%28x%29%7C%2F%CF%80+from+-%CF%80+to+%CF%80
experimentX
  • experimentX
it seems that you are taking 2pi as period, although it works, pi should also work fine.
experimentX
  • experimentX
Plot[2/Pi - Sum[2/Pi * 1/(4 n^2 - 1) Cos[n x], {n, 1, 20}], {x, 0, 4 Pi}] however the period seems to be 2pi
experimentX
  • experimentX
sorry the result was correct .. i forgot it was for even case. On Mathematica Plot[2/Pi - Sum[2/Pi * 1/(4 n^2 - 1) Cos[2 n x], {n, 1, 20}], {x, 0, 2 Pi}]
experimentX
  • experimentX
so the final series is \[ |\sin x| = {2 \over \pi} +{2 \over \pi} \sum_{n=1}^\infty \frac 1{1 - 4 n^2} \cos (2nx) \]
phi
  • phi
In case you didn't find your mistake, it happens when you change the index from n=2,4,6... to r=1,2,3... you should substitute n=2r (so that r= n/2 giving 1,2,3...) you then get exper's result
UnkleRhaukus
  • UnkleRhaukus
ah yes \[\begin{align*} % S(x) S(x)&=\frac{2}\pi+\frac2\pi\sum\limits_{n=1}^\infty\left(\frac{1+(-1)^{n}}{1-n^2}\right)\cos(nx)\\ &=\frac{2}\pi\left(1+2\sum\limits_{n=2,4,6\dots}^\infty\frac{\cos(nx)}{1-n^2}\right)\\ &=\frac{4}\pi\left(\frac12+\sum\limits_{r=1}^\infty\frac{\cos(2rx)}{1-(2r)^2}\right)\\ \\&=\frac4\pi\left(\frac12-\frac{\cos(2x)}{3}-\frac{\cos(4x)}{15}-\frac{\cos(6x)}{35}-\dots\right) \end{align*}\]
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} % S(x) S(x) &=\frac{4}\pi\left(\frac12+\sum\limits_{r=1}^\infty\frac{\cos(2rx)}{1-(2r)^2}\right)\\ \\ S(\tfrac\pi2)&=\frac{4}\pi\left(\frac12+\sum\limits_{r=1}^\infty\frac{\cos(\pi r)}{1-4r^2}\right)\\ 1&=\frac{4}\pi\left(\frac12+\sum\limits_{r=1}^\infty\frac{(-1)^{r}}{1-4r^2}\right)\\ \frac\pi4&=\frac12+\sum\limits_{r=1}^\infty\frac{(-1)^{r}}{1-4r^2}\\ \end{align*}\] thats better thanks to both of you
UnkleRhaukus
  • UnkleRhaukus
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.