anonymous
  • anonymous
Choose the value of the y determinant (Dy) in the following system. 3x – y = 7 2x + 5y = 4
Algebra
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
are there choices
anonymous
  • anonymous
17 39 28 -2
anonymous
  • anonymous
@bman123

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
what do you mean by y [dy] for the set of eq. ??
anonymous
  • anonymous
hey @FlyinSolo_424
anonymous
  • anonymous
oh sorry. and like d (little y) instead of ^y it would be the other way
anonymous
  • anonymous
|dw:1356062104599:dw|
anonymous
  • anonymous
@exploringphysics
anonymous
  • anonymous
list the coefficients without the \(y\) you get \[3,7\]\[2,4\] then \(D_y=3\times 4-7\times 2\) if i remember correctly
anonymous
  • anonymous
im confused @satellite73
anonymous
  • anonymous
did you see how i got this \[3,7\]\[2,4\]?
anonymous
  • anonymous
[3 7] [2 4] id required one can you solve this ?
anonymous
  • anonymous
We start out with the system:\[ \begin{array}{cccc} 3x &–& y &=& 7 \\ 2x &+& 5y &=& 4 \end{array} \] We have our matrix by taking coefficients: \[ \begin{bmatrix} 3&-1\\ 2&5 \end{bmatrix} \]We have our answer column: \[ \begin{bmatrix} 7\\4 \end{bmatrix} \]We replace the y column with the answer column:\[ \begin{bmatrix} 3&7\\ 2&4 \end{bmatrix} \]Then we find the determinant:\[ 3\times 4 - 7 \times 2 \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.