Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
Callisto
Group Title
Find \(\frac{df}{dx}\) where \[f(x) = \int_{x}^{x^2}\frac{1}{\sqrt{1+t^6}}dt\] for x>0 How to start??
 one year ago
 one year ago
Callisto Group Title
Find \(\frac{df}{dx}\) where \[f(x) = \int_{x}^{x^2}\frac{1}{\sqrt{1+t^6}}dt\] for x>0 How to start??
 one year ago
 one year ago

This Question is Closed

zepdrix Group TitleBest ResponseYou've already chosen the best response.2
So this is one of those problems that involves requires you to apply the FTC Part 1. The Fundamental Theorem of Calculus part 1 is,\[\huge \frac{d}{dx}\int\limits_c^x f(t) dt=f(x)\] With this problem, we have an function of x within the upper and lower limits, so it'll look a bit different.\[\large \frac{d}{dx}\int\limits_{x}^{x^2}f(t)dt=f(x^2)\color{blue}{(\frac{d}{dx}x^2)}f(x)\color{blue}{(\frac{d}{dx}x)}\]The blue pieces are there because we have to apply the chain rule.
 one year ago

tkhunny Group TitleBest ResponseYou've already chosen the best response.1
Fundamental Theorem of Integral Calculus will get you started. \(f(x) = \int\limits_{x}^{x^{2}}g(t)\;dt\;=\;G(x^{2})  G(x)\) Where \(G(x)\) is an antiderivative of \(g(x)\). Chain Rule will get us the rest of the way. \(\dfrac{d}{dx}\left(G(x^{2})  G(x)\right)\;=\;g(x^{2})\cdot (2x)  g(x)\cdot (1)\)
 one year ago

Callisto Group TitleBest ResponseYou've already chosen the best response.0
I'm sorry... I was so blind... Thanks all!!!!
 one year ago

tkhunny Group TitleBest ResponseYou've already chosen the best response.1
Don't forget that we DO have to believe that the antiderivative EXISTS! Good work.
 one year ago

Callisto Group TitleBest ResponseYou've already chosen the best response.0
f(x) = f(x) too, I guess. Since it's an even function..
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.