Callisto
  • Callisto
Find \(\frac{df}{dx}\) where \[f(x) = \int_{-x}^{x^2}\frac{1}{\sqrt{1+t^6}}dt\] for x>0 How to start??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Callisto
  • Callisto
brb
zepdrix
  • zepdrix
So this is one of those problems that involves requires you to apply the FTC Part 1. The Fundamental Theorem of Calculus part 1 is,\[\huge \frac{d}{dx}\int\limits_c^x f(t) dt=f(x)\] With this problem, we have an function of x within the upper and lower limits, so it'll look a bit different.\[\large \frac{d}{dx}\int\limits_{-x}^{x^2}f(t)dt=f(x^2)\color{blue}{(\frac{d}{dx}x^2)}-f(-x)\color{blue}{(\frac{d}{dx}-x)}\]The blue pieces are there because we have to apply the chain rule.
tkhunny
  • tkhunny
Fundamental Theorem of Integral Calculus will get you started. \(f(x) = \int\limits_{-x}^{x^{2}}g(t)\;dt\;=\;G(x^{2}) - G(-x)\) Where \(G(x)\) is an antiderivative of \(g(x)\). Chain Rule will get us the rest of the way. \(\dfrac{d}{dx}\left(G(x^{2}) - G(-x)\right)\;=\;g(x^{2})\cdot (2x) - g(-x)\cdot (-1)\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
I'm sorry... I was so blind... Thanks all!!!!
tkhunny
  • tkhunny
Don't forget that we DO have to believe that the antiderivative EXISTS! Good work.
Callisto
  • Callisto
f(-x) = f(x) too, I guess. Since it's an even function..

Looking for something else?

Not the answer you are looking for? Search for more explanations.