## yrelhan4 2 years ago |z-4|=re(z) maximim +arg of complex satisfying this??

1. yrelhan4

oh, maximum positive argument of z satisfying |z-4|=re(z)? i am sorry. messed up a little

2. nitz

mod((x+iy)-4)=x mod((x-4)+iy))=x sqrt((x-4)^2+y^2)=x

3. yrelhan4

i get 16-8x+y^2.. how do i proceed?

4. yrelhan4

=0 *

5. yrelhan4

@nitz ??

6. nitz

sorry that i was thinking could be a way to solve problem but i was wrong....................now i have found a way to solve it .................but dont know how to draw figure here??????????

7. yrelhan4

you can draw it by clicking draw.. right below the box yu type in..

8. yrelhan4

@nitz can you help me please?

9. yrelhan4

options are 30 60,45,90..

10. experimentX

|dw:1356176367696:dw|

11. stgreen

think again z-4=(x-4)+iy not x+i(y+4)

12. experimentX

woops!! sorry .. may fault!! (x-4)^2 + y^2 = x^2 use this relation to maximize this function Arg(z) = arctan(y/x)

13. experimentX
14. yrelhan4

@experimentX how did the site maximise it.. i mean maximing wrt a function. how to do that?

15. yrelhan4

got it!!