UnkleRhaukus
  • UnkleRhaukus
cos(x) as a sine series
Differential Equations
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

UnkleRhaukus
  • UnkleRhaukus
\[\qquad\text{\(f(x)\) as a sine series}\] \begin{equation*} f(x)=\cos(x),\qquad0
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} % a_0,n a_0&=a_n=0\qquad\text{(odd function)}\\ \end{align*}\] \begin{align*} % b_n b_n&=\frac1\pi\int\limits_{-\pi}^\pi g(x)\sin(nx)\,\text dx\\ &=\frac2\pi\int\limits_{0}^\pi \cos(x)\sin(nx)\,\text dx\qquad\text{(even integrand)}\\ &=\frac1\pi\int\limits_{0}^\pi \sin\big((1+n)x\big)-\sin\big((1-n)x\big)\,\text dx\\ &=\frac1\pi\left[\frac{-\cos\big((1+n)x\big)}{1+n}+\frac{\cos\big((1-n)x\big)}{1-n}\Big|_0^\pi\right]\\ &=\frac1\pi\left[\frac{1-\cos\big((1+n)\pi\big)}{1+n}+\frac{\cos\big((1-n)\pi\big)-1}{1-n}\right]\\ &=\frac1\pi\left[\frac{1-(-1)^{n+1}}{1+n}+\frac{(-1)^{n+1}-1}{1-n}\right]\\ &=\frac1\pi\left[\frac{1+(-1)^{n}}{1+n}+\frac{(-1)^{n+1}-1}{1-n}\right]\\ &=\frac1\pi\left[\frac{(1-n)\big(1+(-1)^n\big)-(1+n)\big((-1)^{n}+1\big)}{1-n^2}\right]\\ &=\frac1\pi\left[\frac{-2n\big((-1)^{n}+1\big)}{1-n^2}\right]\\ &=\frac2\pi\left[\frac{n\big((-1)^{n}+1\big)}{n^2-1}\right]\\ \end{align*}
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} % S(x) S(x)&=\frac2\pi\sum\limits_{n=1}^\infty\frac{n\big((-1)^{n}+1\big)}{n^2-1}\sin(nx)\\ &=\frac4\pi\sum\limits_{n=2,4,6,\dots}^\infty\frac{n\sin(nx)}{n^2-1}\\ &=\frac8\pi\sum\limits_{r=1}^\infty\frac{r\sin(2rx)}{4r^2-1}\\ \end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
1 Attachment
UnkleRhaukus
  • UnkleRhaukus
for some reason in the back of my book it has \[\frac8\pi\sum\limits_{r=1}^\infty\frac{r\sin(2rx)}{4r^2+1}\] as the answer, which seams like a mistake to me , but maybe i have overlooked something
anonymous
  • anonymous
The math checks out.
anonymous
  • anonymous
He used the last trig identity on this page convert it. http://www.sosmath.com/trig/Trig5/trig5/trig5.html
anonymous
  • anonymous
Were you expecting bn as 0?
UnkleRhaukus
  • UnkleRhaukus
the only qualm i have on this question is the plus sign in the denominator of answer in the back of the book, i got a minus sign , which seams to graph the correct thing so im not sure .
anonymous
  • anonymous
I got minus as well.
UnkleRhaukus
  • UnkleRhaukus
i guess the back of my book is wrong then ,
hartnn
  • hartnn
yeah, even i get minus doing it another way also...
UnkleRhaukus
  • UnkleRhaukus
Thanks to both of you

Looking for something else?

Not the answer you are looking for? Search for more explanations.