UnkleRhaukus
  • UnkleRhaukus
8+8/9+8/25+...=
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
8(1/1^2 + 1/3^2+1/5^2 +....)
hartnn
  • hartnn
pi^2/8, right ?
UnkleRhaukus
  • UnkleRhaukus
the eights cancel

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
oh yeah...
experimentX
  • experimentX
use this expansion http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
UnkleRhaukus
  • UnkleRhaukus
1 Attachment
hartnn
  • hartnn
or f(x) = x for 0
hartnn
  • hartnn
or simply f(x) = [(pi-x)/2 ]^2 in [0,2pi] find F.S expansion
hartnn
  • hartnn
2nd one is simpler i guess.
experimentX
  • experimentX
Define a function T(x) this way T(x) = arctan(2/pi)x for -pi/2<=x
hartnn
  • hartnn
was the the Q realting Fourier Transform ?? i thot it was....
hartnn
  • hartnn
*this
UnkleRhaukus
  • UnkleRhaukus
i can do the fourier cosines series method i was wondering if there was another way ,
hartnn
  • hartnn
yeah, as i said the 2nd way i shown is simpler...u want the formulas ? or know it ?
UnkleRhaukus
  • UnkleRhaukus
i have worked it out
hartnn
  • hartnn
ok...
UnkleRhaukus
  • UnkleRhaukus
\[\large{\color{grey}{π^2}}\]
experimentX
  • experimentX
Plot[8/Pi^2 Sum[(-1)^(n - 1)/(2 n - 1)^2 Sin[(2 n - 1) x], {n, 1, 20}], {x, 0, 2 Pi}]
experimentX
  • experimentX
\[ T(x) = {2 \pi} \arcsin(\sin(x))\] http://www.wolframalpha.com/input/?i=Plot+2%2Fpi+sin^-1%28sin%28x%29%29
anonymous
  • anonymous
just for fun\[\zeta(2)=\frac{\pi^2}{6}\]\[\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^2}=\sum_{n=1}^{\infty} \frac{1}{(2n)^2}+\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}=\frac{1}{4}\zeta(2)+A\]where\[A=\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}\]and \[A=\frac{3}{4}\zeta(2)=\frac{\pi^2}{8}\]so ur expression becomes\[8A=\pi^2\]
experimentX
  • experimentX
yep!! i realized that :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.