anonymous
  • anonymous
What is the exact value of this
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1356270940251:dw|
hartnn
  • hartnn
\(\huge \frac{\pi^2}{6}\)
anonymous
  • anonymous
how?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
which method do u want? i know the one using Fourier Transform...
anonymous
  • anonymous
Any easy method.... I havent learn Fourier Transform
anonymous
  • anonymous
btw, you can write your question with the equation buttom, then you can copy the script and paste it to the question box, it will emerge as an equation :)
anonymous
  • anonymous
U can do it using Fourier Transform .... I will try to catch it
hartnn
  • hartnn
Fourier Series expansion for f(x) in [0,2pi] \(f(x)=a_0/2+\sum \limits_{n=1}^\infty a_n\cos nx+\sum \limits_{n=1}^\infty b_n\sin nx\) \[a_0=(1/\pi)\int \limits_0^{2\pi}f(x)dx\] \[a_n=(1/\pi)\int \limits_0^{2\pi}f(x)\cos nxdx\] \[a_0=(1/\pi)\int \limits_0^{2\pi}f(x)\sin nxdx\]
hartnn
  • hartnn
here, use \(f(x)=(\frac{\pi-x}{2})^2\)
hartnn
  • hartnn
and find Fourier series Expansion of f(x) u should get, bn=0 an=1/n^2
hartnn
  • hartnn
sorry, the last one is bn \[b_n=(1/\pi)\int \limits_0^{2\pi}f(x)\sin nxdx\]
hartnn
  • hartnn
this really is the longer way to do it...
anonymous
  • anonymous
Thanx for the reply will see it later

Looking for something else?

Not the answer you are looking for? Search for more explanations.