anonymous
  • anonymous
how many different string can be made from the word PEPPERCORN when all letters are used and such strings do not contain the substring CON?
Probability
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
im interested in seeing how this one is done!
anonymous
  • anonymous
no of different strings that can be made from the word PEPPERCORN are \[10!/(3!*2!)\] as there are 10 letters with one letter being repeated thrice and one leter being repeated twice No of strings with sub string CON are \[8!/(3!*2!)\] as there are 8 letters (consider whole CON as one letter or unit) and P repeated thrice and E repeated twice Hence no of different strings without the substring CON are \[10!/(3!*2!) - 8!/(3!*2!)\]
anonymous
  • anonymous
where did you get the (3!*2!)?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
okay i get it :) thanks... 3! and 2! is from the letters which are repeated right
anonymous
  • anonymous
yup...10! is assuming all the letters are different but our word has three P's which when interchanged do not change the arrangement but have been in included in the 10! as different arrangements...now no of times the each unique arrangement is reapeated is equal to no of times the 3 P's have been interchanged or permuted among themselves. That is 3! hence divide by 3!. Like wise 2! for E's
anonymous
  • anonymous
and why must be 8!, i know 8 is from the prob of CON in string with length 10, and we substract it..hm..why?
kropot72
  • kropot72
@sumanth4phy There are two letter Rs in PEPPERCORN.
anonymous
  • anonymous
Imagine gluing all the letters of CON togetehr as single unit. Now we have the letters "P, E, P, P, E, R, CON" we should not count CON as three letters but one as we need permutations where CON is clubbed hence 8! CON has to exist as substring which implies u cant treat C, O, N as individual letters any more. There are fixed with respect to each other only the clubbed substring can be shifted here and there with other letters
anonymous
  • anonymous
yeah, i found 2 letters which are repeated twice, R and E, then 1 letter which is repeated thrice, it's P so 8!/(3!2!2!) or 8!/(3!2!) ?
anonymous
  • anonymous
yup I have overlooked R's solution is \[10!(3!*2!*2!) - 8!/(3!*2!*2!)\]
anonymous
  • anonymous
okay thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.