Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

how many different strings over uppercase alphabet (A to Z) of length 9 are not palindromes?

Probability
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Number of strings = 26^9 Number of palindromes = 26^5 Number of strings that are not palindromes = 26^9-26^5=5429491797600
i think to find the palindromic numbers, we must divided by some cases : case I : it's forms be AAAA(A)AAAA (next i always signed for the middle term) so, 4!/4! * 26P1 = 26P1 = 26!/25! = 26 case II : it's forms be AAAA(B)AAAA so, 4!/4! * 26P2 = 26P2 = 26!/24! = 26 * 25 = 650 case III : it's forms be AAAB(C)BAAA so, 4!/3! * 26P3 = 4 * 26!/23! = 4 * 26 * 25 * 24 = 62400 case IV : it's forms be AABC(D)CBAA so, 4!/2! * 26P4 = 12 * 26!/22! = 12*26*25*24*23 = 4305600 vase V : it's forms be ABCD(E)DCBA so, 4! * 26P5 = 24 * 26!/21! = 24*26*25*24*23*22 = 189446400 thus, the total of palindromic numbers = 26+650+62400+4305600+189446400 = 193815076 and we know that for all Number of strings = 26^9 therefore, the total different strings over uppercase alphabet (A to Z) of length 9 are not palindromes = 26^9 - 193815076 CMIIW (correct me if im wrong) :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

please, verify...
seems to me that u covered all cases, but still take 2nd opinion ...
yeah, i hope anyone can give the other ways
please correct me if am wrong anywhere in the logic.. ____ _ ____ no. of ways to fill in first 4 spaces = 26^4 after filing of 1st 4 spaces, so as to form a palindrome, we have only 1 way to fill in last 4 for the 5th space, we can have 26 options, so total palindromes = 26^4 * 26 = 26^5 so somehow, i agree with @mathmate 's ans
thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question