At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

|dw:1356426308338:dw|

\[=\sum\limits_{n=4}^{25}\frac{1}{n^2+1}\]

i think, the problem wants a rational number

if without wolfram ?

im not sure ,

what is the context that the problem came from ?

The real question is if there is a simplification of: \[
\sum \frac{1}{n^2+1}
\]

Like, maybe partial fraction decomposition could help us?

I'm not familiar with this series actually. I'm not sure how to find it's partial sum.

@calculusfunctions
that power series u use is for when \(|x|<1\)