Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

gorica

Let W, S, T be subspaces of finite-dimensional vector space such that S∩T=S∩W S+T=S+W, and W is subset of T. Prove that W=T.

  • one year ago
  • one year ago

  • This Question is Closed
  1. Edutopia
    Best Response
    You've already chosen the best response.
    Medals 0

    ..

    • one year ago
  2. abb0t
    Best Response
    You've already chosen the best response.
    Medals 0

    Definition of Composition?

    • one year ago
  3. malevolence19
    Best Response
    You've already chosen the best response.
    Medals 0

    I'm not sure of a formal proof but if you think about it the only way that S+T=S+W is if they are the same. If they were not the same that would mean there is an element of T not in W or an element of W not in T. If not you'd have something like {1,2}+{3,4,5}={1,2}+{3,4,6} implies {1,2,3,4,5}={1,2,3,4,6} which is not true obviously. It is still true that their intersections can be equal. {1,2} intersect {3,4,5} is the same as {1,2} intersect {3,4,6} (in this case the empty set). I think that the fact of their intersections with S are equal is superfluous information but I didn't care for proofs too much.

    • one year ago
  4. gorica
    Best Response
    You've already chosen the best response.
    Medals 0

    actually, I have to prove that T is subset of W, using what is given, and that will imply that T=W since I already have given that W is subset of T.

    • one year ago
  5. AddemF
    Best Response
    You've already chosen the best response.
    Medals 1

    Consider any arbitrary element of T, call it t. We want to show that t is in W. Suppose that t is not in W and let's try to get a contradiction. If t is not in W then it is still in S+T which is the same as S+W and so there exist some s in S and w in W such that t = s+w. But since we know W is a subset of T, then this w is in T. For that reason, let's re-name it t1, to show that it is actually in T. That means t = s+t1. And since the intersection of S and T is a subspace, it is closed under addition. Therefore s+t1 is an element of the intersection of S and T, and since this is the same thing as t, then t is in the intersection of S and T. But the intersection of S and T is the same as the intersection of S and W. This means t is in W. This contradicts our initial assumption. Therefore t is in W. By definition of set inclusion, T is a subset of W.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.